Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Ciftci, Mustafa" seçeneğine göre listele

Listeleniyor 1 - 7 / 7
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Küçük Resim Yok
    Öğe
    Controlled release of anticancer drug Paclitaxel using nano-structured amphiphilic star-hyperbranched block copolymers
    (Royal Soc Chemistry, 2015) Geyik, Caner; Ciftci, Mustafa; Demir, Bilal; Guler, Bahar; Ozkaya, A. Burak; Gumus, Z. Pinar; Barlas, F. Baris; Demirkol, Dilek Odaci; Coskunol, Hakan; Timur, Suna; Yagci, Yusuf
    In the present study, two amphiphilic star-hyperbranched copolymers based on poly(methyl methacrylate)-b-poly(2-hydroxyethyl methacrylate) (PMMA-b-PHEMA), with different hydrophilic PHEMA segment contents (PMMA-b-PHEMA-1, and PMMA-b-PHEMA-2), were synthesized, and their drug loading and release profiles were examined using Paclitaxel (PTX) as a model drug. The drug loading capacities and encapsulation efficiencies were found to be similar in both polymers. The encapsulation efficiencies were found to be prominent at 98% and 98.5% for PMMA-b-PHEMA-1 and PMMA-b-PHEMA-2, respectively. On the other hand, the drug release behaviors varied in favor of the block copolymer comprising shorter PHEMA chains (PMMA-b-PHEMA-1). Additionally, to assess the biological effects of PTX-loaded polymers, human non-small cell lung carcinoma (A549) cells were used. Cell viability and cell cycle analysis showed that both polymers were non-toxic to cells. The cytotoxic effect of PTX-loaded PMMA-b-PHEMA-1 on A 549 cells was greater (66.49% cell viability at 5.0 ng mL(-1) PTX) than that of PMMA-b-PHEMA-2 (72.47% cell viability at 5.0 ng mL(-1) PTX), consistent with the drug release experiments.
  • Küçük Resim Yok
    Öğe
    A Functional Platform for the Detection of JWH-073 as a Model for Synthetic Cannabinoids
    (Wiley-V C H Verlag Gmbh, 2018) Sengel, Tulay Yilmaz; Celik, Emine Guler; Aydogan, Cansu; Gumus, Zinar Pinar; Ilktac, Raif; Aydindogan, Eda; Ciftci, Mustafa; Aldemir, Ebru; Coskunol, Hakan; Timur, Suna; Yagci, Yusuf
    During the last decade, progress has been made in the on-site detection of abused drug use. Herein, we present an electrochemical biosensor for the detection of one of the synthetic cannabinoids (SCs), JWH-073, using poly (methyl methacrylate) (PMMA) hyperbranched copolymer (HBC) as a base coating and antibody molecules to bind the JWH-073 to the surface. Modification of the surface is proved with various techniques such as differential pulse voltammetry, cyclic voltammetry, and electrochemical impedance spectrometry. The limit of detection and linearity (in logarithmic scale) for JWH-073 were found to be 31.87 ng/mL and 25-500 ng/mL, respectively. The selectivity of the proposed biosensor was also tested in the presence of interfering molecules and the response was much higher for JWH-073 in all measurements. In the final part of the study, synthetic urine was tested with the device and the relative standard deviation value was calculated to be less than 5.0%. The confirmation of data from the resulting bio-platform was performed via LC-QTOF/MS. This work is the first of its kind, a novel, rapid, cost-effective sensing platform for the detection of the SC.
  • Küçük Resim Yok
    Öğe
    Functional Surfaces Constructed with Hyperbranched Copolymers as Optical Imaging and Electrochemical Cell Sensing Platforms
    (Wiley-V C H Verlag Gmbh, 2018) Balta, Sebila; Aydogan, Cansu; Demir, Bilal; Geyik, Caner; Ciftci, Mustafa; Guler, Emine; Demirkol, Dilek Odaci; Timur, Suna; Yagci, Yusuf
    In the present study, hyperbranched copolymers (HBCs), namely poly(methyl methacrylate) (PMMA)-co-poly(2-hydroxyethylmethacrylate) and PMMA-co-poly(2-dimethylamino ethyl methacrylate), are photochemically synthesized by self-condensing vinyl polymerization of methyl methacrylate with the corresponding inimer using Type II photoinitiators. HBCs with different functional group and branching densities are used as surface coating materials in cellular adhesion and the respective electrochemical-based studies. After the main surface characterization of the synthesized three HBCs with contact angle measurements and atomic force microscopy, HaCaT keratinocytes and human neuroglioblastoma (U-87MG) cell lines to the surfaces are conducted. The adherence of cells is proven by both fluorescence cell imaging and electrochemical methods such as cyclic voltammetry and differential pulse voltammetry. The described strategy involving hyperbranched polymers offers great potential for fabricating various new surfaces in particular on-chip-sensing applications.
  • Küçük Resim Yok
    Öğe
    Nanostructured Amphiphilic Star-Hyperbranched Block Copolymers for Drug Delivery
    (Amer Chemical Soc, 2015) Seleci, Muharrem; Seleci, Didem Ag; Ciftci, Mustafa; Demirkol, Dilek Odaci; Stahl, Frank; Timur, Suna; Scheper, Thomas; Yagci, Yusuf
    A robust drug delivery system based on nanosized amphiphilic star-hyperbranched block copolymer, namely, poly(methyl methacrylate-block-poly(hydroxylethyl methacrylate) (PMMA-b-PHEMA) is described. PMMA-b-PHEMA was prepared by sequential visible light induced self-condensing vinyl polymerization (SCVP) and conventional vinyl polymerization. All of the synthesis and characterization details of the conjugates are reported. To accomplish tumor cell targeting property, initially cell-targeting (arginylglycylaspactic acid; RGD) and penetrating peptides (Cys-TAT) were binding to each other via the well-known EDC/NHS chemistry. Then, the resulting peptide was further incorporated to the surface of the amphiphilic hyperbranched copolymer via a coupling reaction between the thiol (-SH) group of the peptide and the hydroxyl group of copolymer by using N-(p-maleinimidophenyl) isocyanate as a heterolinker. The drug release property and targeting effect of the anticancer drug (doxorobucin; DOX) loaded nanostructures to two different cell lines were evaluated in vitro. U87 and MCF-7 were chosen as integrin alpha(v)beta(3) receptor positive and negative cells for the comparison of the targeting efficiency, respectively. The data showed that drug-loaded copolymers exhibited enhanced cell inhibition toward U87 cells in compared to MCF-7 cells because targeting increased the cytotoxicity of drug-loaded copolymers against integrin alpha(v)beta(3) receptor expressing tumor cells.
  • Küçük Resim Yok
    Öğe
    Nanostructured Amphiphilic Star-Hyperbranched Block Copolymers for Drug Delivery
    (Amer Chemical Soc, 2015) Seleci, Muharrem; Seleci, Didem Ag; Ciftci, Mustafa; Demirkol, Dilek Odaci; Stahl, Frank; Timur, Suna; Scheper, Thomas; Yagci, Yusuf
    A robust drug delivery system based on nanosized amphiphilic star-hyperbranched block copolymer, namely, poly(methyl methacrylate-block-poly(hydroxylethyl methacrylate) (PMMA-b-PHEMA) is described. PMMA-b-PHEMA was prepared by sequential visible light induced self-condensing vinyl polymerization (SCVP) and conventional vinyl polymerization. All of the synthesis and characterization details of the conjugates are reported. To accomplish tumor cell targeting property, initially cell-targeting (arginylglycylaspactic acid; RGD) and penetrating peptides (Cys-TAT) were binding to each other via the well-known EDC/NHS chemistry. Then, the resulting peptide was further incorporated to the surface of the amphiphilic hyperbranched copolymer via a coupling reaction between the thiol (-SH) group of the peptide and the hydroxyl group of copolymer by using N-(p-maleinimidophenyl) isocyanate as a heterolinker. The drug release property and targeting effect of the anticancer drug (doxorobucin; DOX) loaded nanostructures to two different cell lines were evaluated in vitro. U87 and MCF-7 were chosen as integrin alpha(v)beta(3) receptor positive and negative cells for the comparison of the targeting efficiency, respectively. The data showed that drug-loaded copolymers exhibited enhanced cell inhibition toward U87 cells in compared to MCF-7 cells because targeting increased the cytotoxicity of drug-loaded copolymers against integrin alpha(v)beta(3) receptor expressing tumor cells.
  • Küçük Resim Yok
    Öğe
    Nanostructured Amphiphilic Star-Hyperbranched Block Copolymers for Drug Delivery
    (Amer Chemical Soc, 2015) Seleci, Muharrem; Seleci, Didem Ag; Ciftci, Mustafa; Demirkol, Dilek Odaci; Stahl, Frank; Timur, Suna; Scheper, Thomas; Yagci, Yusuf
    A robust drug delivery system based on nanosized amphiphilic star-hyperbranched block copolymer, namely, poly(methyl methacrylate-block-poly(hydroxylethyl methacrylate) (PMMA-b-PHEMA) is described. PMMA-b-PHEMA was prepared by sequential visible light induced self-condensing vinyl polymerization (SCVP) and conventional vinyl polymerization. All of the synthesis and characterization details of the conjugates are reported. To accomplish tumor cell targeting property, initially cell-targeting (arginylglycylaspactic acid; RGD) and penetrating peptides (Cys-TAT) were binding to each other via the well-known EDC/NHS chemistry. Then, the resulting peptide was further incorporated to the surface of the amphiphilic hyperbranched copolymer via a coupling reaction between the thiol (-SH) group of the peptide and the hydroxyl group of copolymer by using N-(p-maleinimidophenyl) isocyanate as a heterolinker. The drug release property and targeting effect of the anticancer drug (doxorobucin; DOX) loaded nanostructures to two different cell lines were evaluated in vitro. U87 and MCF-7 were chosen as integrin alpha(v)beta(3) receptor positive and negative cells for the comparison of the targeting efficiency, respectively. The data showed that drug-loaded copolymers exhibited enhanced cell inhibition toward U87 cells in compared to MCF-7 cells because targeting increased the cytotoxicity of drug-loaded copolymers against integrin alpha(v)beta(3) receptor expressing tumor cells.
  • Küçük Resim Yok
    Öğe
    Photoinduced in situ formation of clickable PEG hydrogels and their antibody conjugation
    (Taylor & Francis Ltd, 2015) Kahveci, Muhammet U.; Ciftci, Mustafa; Evran, Serap; Timur, Suna; Yagci, Yusuf
    A simple approach for the preparation of a clickable poly(ethylene glycol)-based hydrogel as a polymeric support for protein immobilization via photoinitiated free radical polymerization of poly(ethylene glycol) diacrylate and propargyl acrylate is established. Bioconjugation to the obtained gels was achieved by azide-alkyne click reaction with azido-functionalized anti-immunoglobulin G (anti-IgG) and anti-His tag antibodies. Evaluation of the affinities of the PEG hydrogels to the corresponding substrates (IgG and His-tagged YFP, respectively) indicates their specific binding capability.

| Ege Üniversitesi | Kütüphane | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Ege Üniversitesi Rektörlüğü Gençlik Caddesi No : 12 35040 Bornova - İZMİR, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim