Activity and stability enhancement of ?-amylase treated with sub- and supercritical carbon dioxide

Küçük Resim Yok

Tarih

2011

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

Various physical, chemical and genetic approaches have been applied in order to enhance enzyme stability and activity. In this study, the aim was to investigate the capability of sub- and supercritical carbon dioxide to alter the stability and activity of ?-amylase as an alternative technique. The effects of operational parameters such as pressure (50-300bar), temperature (28-80°C), CO 2 flow (2-10gmin -1) and time (60-180min) were evaluated in regard to the activity and stability of fungal based ?-amylase from Aspergillus oryzea. The activity of untreated enzyme was determined as 17,726µmol/ml/min. While both sub- and supercritical conditions enhanced the activity, the increase in flow rate had an adverse effect and the activity was decreased by 28.9% at a flow rate of 10gmin -1 under supercritical conditions. Nuclear magnetic resonance (NMR) spectra of untreated enzyme and treated samples exhibiting the lowest and the highest activities were almost identical except for the chemical shifts observed at the lowest activity sample from 4.0 to 4.4ppm which were assigned to protons of hydrogen-bonded groups. Optimum conditions were determined as 240bar, 41°C, 4gmin -1 CO 2 flow and 150min of process duration yielding 67.7% (29,728µmol/ml/min) higher activity than the untreated enzyme providing fundamental basis for enzymatic applications. © 2011 The Society for Biotechnology, Japan.

Açıklama

Anahtar Kelimeler

Amylase, Enzyme activity, Nuclear magnetic resonance (NMR), Optimization, Scanning electron microscopy (SEM), Supercritical fluid processsing

Kaynak

Journal of Bioscience and Bioengineering

WoS Q Değeri

Scopus Q Değeri

Q2

Cilt

112

Sayı

5

Künye