Influenza Vaccine: An Engineering Vision from Virological Importance to Production

dc.authorscopusid57731678300
dc.authorscopusid57939316000
dc.authorscopusid57204290601
dc.authorscopusid23995769500
dc.contributor.authorDemirden, S. Furkan
dc.contributor.authorAlptekin, Kadir
dc.contributor.authorKimiz-Gebologlu, Ilgin
dc.contributor.authorOncel, Suphi S.
dc.date.accessioned2023-01-12T19:51:31Z
dc.date.available2023-01-12T19:51:31Z
dc.date.issued2022
dc.departmentN/A/Departmenten_US
dc.description.abstractAccording to data from the World Health Organization (WHO) every year, millions of people are affected by flu. Flu is a disease caused by influenza viruses. For preventing this, seasonal influenza vaccinations are widely considered the most efficient way to protect against the negative effects of the flu. To date, there is no one-size-fits-all vaccine that can be effective all over the world to protect against all seasonal or pandemic influenza virus types. Because influenza virus transforms its genetic structure and it can emerges as immunogenically new (antigenic drift) which causes epidemics or new virus subtype (antigenic shift) which causes pandemics. As a result, annual revaccination or new subtype viral vaccine development is required. Currently, three types of vaccines (inactivated, live attenuated, and recombinant) are approved in different countries. These can be named conventional influenza vaccines and their production are based on eggs or cell culture. Although, there is good effort to develop new influenza vaccines for broader and longer period of time protection. In this sense these candidate vaccines are called universal influenza vaccines. In this article, after we mentioned the short history of flu then virus morphology and infection, we explained the diseases caused by the influenza virus in humans. Afterward, we explained in detail the production methods of available influenza vaccines, types of bioreactors used in cell culture based production, conventional and new vaccine types, and development strategies for better vaccines.en_US
dc.identifier.doi10.1007/s12257-022-0115-8
dc.identifier.endpage738en_US
dc.identifier.issn1226-8372
dc.identifier.issn1976-3816
dc.identifier.issue5en_US
dc.identifier.pmid36313971en_US
dc.identifier.scopus2-s2.0-85140437574en_US
dc.identifier.scopusqualityQ3en_US
dc.identifier.startpage714en_US
dc.identifier.urihttps://doi.org/10.1007/s12257-022-0115-8
dc.identifier.urihttps://hdl.handle.net/11454/76286
dc.identifier.volume27en_US
dc.identifier.wosWOS:000871294900003en_US
dc.identifier.wosqualityQ3en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.indekslendigikaynakPubMeden_US
dc.language.isoenen_US
dc.publisherKorean Soc Biotechnology & Bioengineeringen_US
dc.relation.ispartofBiotechnology and Bioprocess Engineeringen_US
dc.relation.publicationcategoryDiğeren_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectinfluenza virusen_US
dc.subjectinfluenza vaccineen_US
dc.subjectvaccine manufacturingen_US
dc.subjectcell culture-based vaccine productionen_US
dc.subjectvaccine production in bioreactorsen_US
dc.subjectinfluenza vaccine development strategiesen_US
dc.subjectCell-Density Cultivationsen_US
dc.subjectVirus Productionen_US
dc.subjectA Virusen_US
dc.subjectMdck Cellsen_US
dc.subjectPerfusionen_US
dc.subjectProgressen_US
dc.subjectCultureen_US
dc.subjectAdherenten_US
dc.subjectImmunityen_US
dc.subjectInnateen_US
dc.titleInfluenza Vaccine: An Engineering Vision from Virological Importance to Productionen_US
dc.typeReviewen_US

Dosyalar