A Meta-Ensemble Classifier Approach: Random Rotation Forest

dc.contributor.authorTaşcı, E.
dc.date.accessioned2021-05-03T21:24:50Z
dc.date.available2021-05-03T21:24:50Z
dc.date.issued2019
dc.departmentEge Üniversitesien_US
dc.description.abstractEnsemble learning is a popular and intensively studied field in machine learning and pattern recognition to increase the performance of the classification. Random forest is very important for giving fast and effective results. On the other hand, Rotation Forest can get better performance than Random Forest. In this study, we present a meta-ensemble classifier, called Random Rotation Forest to utilize and combine the advantages of two classifiers (e.g. Rotation Forest and Random Forest). In the experimental studies, we use three base learners (namely, J48, REPTree, and Random Forest) and two meta-learners (namely, Bagging and Rotation Forest) for ensemble classification on five datasets in UCI Machine Learning Repository. The experimental results indicate that Random Rotation Forest gives promising results according to base learners and bagging ensemble approaches in terms of accuracy rates, AUC, precision, recall, and F-measure values. Our method can be used for image/pattern recognition and machine learning problems.en_US
dc.identifier.doi10.17694/bajece.502156
dc.identifier.endpage187en_US
dc.identifier.issn2147-284X
dc.identifier.issue2en_US
dc.identifier.startpage182en_US
dc.identifier.urihttps://doi.org/10.17694/bajece.502156
dc.identifier.urihttps://app.trdizin.gov.tr/makale/TXpFNE1ERTBOQT09
dc.identifier.urihttps://hdl.handle.net/11454/72538
dc.identifier.volume7en_US
dc.indekslendigikaynakTR-Dizinen_US
dc.language.isotren_US
dc.relation.ispartofBalkan Journal of Electrical and Computer Engineeringen_US
dc.relation.publicationcategoryMakale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectBilgisayar Bilimleri, Yapay Zekaen_US
dc.subjectBilgisayar Bilimleri, Sibernitiken_US
dc.subjectBilgisayar Bilimleri, Donanım ve Mimarien_US
dc.subjectBilgisayar Bilimleri, Bilgi Sistemlerien_US
dc.subjectBilgisayar Bilimleri, Yazılım Mühendisliğien_US
dc.subjectBilgisayar Bilimleri, Teori ve Metotlaren_US
dc.subjectMühendislik, Biyotıpen_US
dc.subjectMühendislik, Elektrik ve Elektroniken_US
dc.subjectYeşil, Sürdürülebilir Bilim ve Teknolojien_US
dc.subjectTelekomünikasyonen_US
dc.titleA Meta-Ensemble Classifier Approach: Random Rotation Foresten_US
dc.typeArticleen_US

Dosyalar