A Meta-Ensemble Classifier Approach: Random Rotation Forest

Küçük Resim Yok

Tarih

2019

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

Ensemble learning is a popular and intensively studied field in machine learning and pattern recognition to increase the performance of the classification. Random forest is very important for giving fast and effective results. On the other hand, Rotation Forest can get better performance than Random Forest. In this study, we present a meta-ensemble classifier, called Random Rotation Forest to utilize and combine the advantages of two classifiers (e.g. Rotation Forest and Random Forest). In the experimental studies, we use three base learners (namely, J48, REPTree, and Random Forest) and two meta-learners (namely, Bagging and Rotation Forest) for ensemble classification on five datasets in UCI Machine Learning Repository. The experimental results indicate that Random Rotation Forest gives promising results according to base learners and bagging ensemble approaches in terms of accuracy rates, AUC, precision, recall, and F-measure values. Our method can be used for image/pattern recognition and machine learning problems.

Açıklama

Anahtar Kelimeler

Bilgisayar Bilimleri, Yapay Zeka, Bilgisayar Bilimleri, Sibernitik, Bilgisayar Bilimleri, Donanım ve Mimari, Bilgisayar Bilimleri, Bilgi Sistemleri, Bilgisayar Bilimleri, Yazılım Mühendisliği, Bilgisayar Bilimleri, Teori ve Metotlar, Mühendislik, Biyotıp, Mühendislik, Elektrik ve Elektronik, Yeşil, Sürdürülebilir Bilim ve Teknoloji, Telekomünikasyon

Kaynak

Balkan Journal of Electrical and Computer Engineering

WoS Q Değeri

Scopus Q Değeri

Cilt

7

Sayı

2

Künye