Yazar "Aydin, H." seçeneğine göre listele
Listeleniyor 1 - 8 / 8
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Automatic indigo measurement system as part of a dosing system for indigo dyeing(Inst Chemical Fibres, 2006) Kumbasar, E. P. Akcakoca; Aydin, H.; Ondogan, Z.; Ozcelik, M.; Ondogan, E. N.Indigo dye has been widely used for dyeing traditional blue denim products intended to give a worn faded look. However while using the warp yarn dyeing process with indigo dye often occur problems of colour variation. To prevent colour variation, controlling the indigo dye baths is an important factor The objectives of this study include adjusting dosages of leuco indigo, hydrosulphite, pH (caustic), using an automatic measurement and dosing system taking redox titrations as the basis. It was observed that measurements carried out with this system became more reliable and also had a positive effect on the quality of the product.Öğe Effect of Aromatic SAMs Molecules on Graphene/Silicon Schottky Diode Performance(Electrochemical Soc Inc, 2016) Yagmurcukardes, N.; Aydin, H.; Can, M.; Yanilmaz, A.; Mermer, O.; Okur, S.; Selamet, Y.Au/n-Si/Graphene/Au Schottky diodes were fabricated by transferring atmospheric pressure chemical vapor deposited (APCVD) graphene on silicon substrates. Graphene/n-Si interface properties were improved by using 5-[(3-methylphenyl)(phenyl) amino] isophthalic acid (MePIFA) and 5-(diphenyl) amino] isophthalic acid (DPIFA) aromatic self-assembled monolayer (SAM) molecules. The surface morphologies of modified and non-modified films were investigated by atomic force microscopy and scanning electron microscopy. The surface potential characteristics were obtained by Kelvin-probe force microscopy and found as 0.158 V, 0.188 V and 0,383 V as a result of SAMs modification. The ideality factors of n-Si/Graphene, n-Si/MePIFA/Graphene and n-Si/DPIFA/Graphene diodes were found as 1.07, 1.13 and 1.15, respectively. Due to the chain length of aromatic organic MePIFA and DPIFA molecules, also the barrier height phi(B) values of the devices were decreased. While the barrier height of n-Si/Graphene diode was obtained as 0.931 eV, n-Si/MePIFA/Graphene and n-Si/DPIFA/Graphene diodes have barrier height of 0.820 and 0.720 eV, respectively. (C) 2016 The Electrochemical Society. All rights reserved.Öğe Electrical Characterizations of Schottky Diodes on ITO Modified by Aromatic SAMs(Polish Acad Sciences Inst Physics, 2013) Havare, A. K.; Okur, S.; Yagmurcukardes, N. T.; Can, M.; Aydin, H.; Seker, M.; Demic, S.In order to understand the electronic properties of the organic Schottky diode, ITO/TPD/Aland ITO/SAM/TPD/Al organic Schottky devices were fabricated to obtain current voltage characteristics. From the slopes and y-axis intercepts of the plots, the values of the ideality factor, barrier heights of the ITO/SAM/TPD/Al diode were determined as 2.03 and 0.56 eV, respectively. The surface characterizations of modified and unmodified ITO were performed via atomic force microscopy. DOT: 10.12693/APhysPolA.123.456Öğe Electrical Characterizations of Schottky Diodes on ITO Modified by Aromatic SAMs(Polish Acad Sciences Inst Physics, 2013) Havare, A. K.; Okur, S.; Yagmurcukardes, N. T.; Can, M.; Aydin, H.; Seker, M.; Demic, S.In order to understand the electronic properties of the organic Schottky diode, ITO/TPD/Aland ITO/SAM/TPD/Al organic Schottky devices were fabricated to obtain current voltage characteristics. From the slopes and y-axis intercepts of the plots, the values of the ideality factor, barrier heights of the ITO/SAM/TPD/Al diode were determined as 2.03 and 0.56 eV, respectively. The surface characterizations of modified and unmodified ITO were performed via atomic force microscopy. DOT: 10.12693/APhysPolA.123.456Öğe Enhancement of luminescence and thermal stability in Eu3+-doped K3Y(BO2)6 with Li+ and Na+ co-doping (vol 35, 104695, 2024)(Elsevier, 2024) Kaynar, U. H.; Aydin, H.; Altowyan, Abeer S.; Hakami, J.; Coban, M. B.; Ayvacikli, M.; Karali, E. Ekdal; Canimoglu, A.; Can, N.[Abstract Not Available]Öğe Experimental and computational investigation of graphene/SAMs/n-Si Schottky diodes(Elsevier Science Bv, 2018) Aydin, H.; Bacaksiz, C.; Yagmurcukardes, N.; Karakaya, C.; Mermer, O.; Can, M.; Senger, R. T.; Sahin, H.; Selamet, Y.We have investigated the effect of two different self-assembled monolayers (SAMs) on electrical characteristics of bilayer graphene (BLG)/n-Si Schottky diodes. Novel 4"bis(diphenylamino)-1, 1':3"-terpheny1-5' carboxylic acids (TPA) and 4,4-di-9H-carbazol-9-y1-1,1':3'1'-terpheny1-5' carboxylic acid (CAR) aromatic SAMs have been used to modify n-Si surfaces. Cyclic voltammetry (CV) and Kelvin probe force microscopy (KPFM) results have been evaluated to verify the modification of n-Si surface. The current-voltage (I-V) characteristics of bare and SAMs modified devices show rectification behaviour verifying a Schottky junction at the interface. The ideality factors (n) from ln(I)-V dependences were determined as 2.13,1.96 and 2.07 for BLG/n-Si, BLG/TPA/n-Si and BLG/CAR/n-Si Schottky diodes, respectively. In addition, Schottky barrier height (SBH) and series resistance (Rs) of SAMs modified diodes were decreased compared to bare diode due to the formation of a compatible interface between graphene and Si as well as n-n interaction between aromatic SAMs and graphene. The CAR-based device exhibits better diode characteristic compared to the TPA-based device. Computational simulations show that the BLG/CAR system exhibits smaller energy-level-differences than the BLG/TPA, which supports the experimental findings of a lower Schottky barrier and series resistance in BLG/CAR diode. (C) 2017 Elsevier B.V. All rights reserved.Öğe Investigation of the Electrical Parameters of the Organic Diode Modified with 4-[(3-Methylphenyl)(phenyl)amino] Benzoic Acid(Electrochemical Soc Inc, 2016) Havare, A. Kemal; Can, M.; Yagmurcukardes, N.; Yigit, M. Z.; Aydin, H.; Okur, S.; Demic, S.; Icli, S.4-[(3-Methylphenyl)(phenyl)amino]benzoic acid (MPPBA) self-assembled monolayer (SAM) molecules as hole injection is formed on p and n type Si and on indium-tin oxide (ITO) electrodes to investigate the effect on the electrical parameters of hole only organic device. The hole mobility improvement of organic device was attributed to an intermediate energy level formed between hole transport materials (HTL) (N,N'-Bis(naphthalen-1-yl)-N,N'-bis(phenyl)benzidine -NPB) and ITO when forming an ultrathin MPPBA layer, leading to increase of carrier mobility of the device. Space charge limited current (SCLC) technique is used to estimate the mobility of the NPB formed at the interface metal/organic Ohmic contact. The hole mobility of ITO/NPB/Al and ITO/MPPBA/NPB/Al devices were obtained as 1.80 x 10(-6) and 1.76 x 10(-3) cm(2)/Vs, at 1350 E (V/cm)(1/2) applied electric field, respectively. SAM modified devices has lower barrier height values. The electronic characteristic parameters of the ITO/(with or without MPPBA)/NPB/Al, Au/n-Si(or p-Si)/(with or without MPPBA)/Au contacts were calculated using current-voltage (I-V) measurements by Schottky type carrier injection. (C) The Author(s) 2016. Published by ECS.Öğe A Review of Hydraulic Fracturing and Latest Developments in Unconventional Reservoirs(Offshore Technology Conference, 2022) Temizel, C.; Canbaz, C.H.; Palabiyik, Y.; Hosgor, F.B.; Atayev, H.; Ozyurtkan, M.H.; Aydin, H.Hydraulic fracturing is a widely accepted and applied stimulation method in the unconventional oil and gas industry. With the increasing attention to unconventional reservoirs, hydraulic fracturing technologies have developed and improved more in the last few years. This study explores all applications of hydraulic fracturing methods to a great extent. It can be used as a guideline study, covering all the procedures and collected data for conventional reservoirs by considering the limited parameters of unconventional reservoirs. This paper intends to be a reference article containing all the aspects of the hydraulic fracturing method. A comprehensive study has been created by having a wide scope of examinations from the applied mechanisms to the technological materials conveyed from the different industries to utilize this technique efficiently. Furthermore, this study analyses the method, worldwide applications, advantages and disadvantages, and comparisons in different unconventional reservoirs. Various case studies that examine the challenges and pros & cons of hydraulic fracturing are included. Hydraulic fracturing is a promising stimulation technique that has been widely applied worldwide. It is challenging due to the tight and nanoporous nature, low permeability, complex geological structure, and in-situ stress field in unconventional reservoirs. Consequently, economic conditions and various parameters should be analyzed individually in each case for efficient applications. Therefore, this study provides the primary parameters and elaborate analysis of the techniques applied for a successful stimulation under SPECIFIC circumstances and provides a full spectrum of information needed for unconventional field developments. All the results are evaluated and detailed for each field case by providing the principles of applying hydraulic fracturing technologies. Many literature reviews provide different examples of hydraulic fraction methods; however, no study covers and links up both the main parameters and learnings from real cases worldwide. This study will fill this gap and illuminate the application of the hydraulic fracturing method. © 2022, Offshore Technology Conference. All rights reserved.