Effect of Aromatic SAMs Molecules on Graphene/Silicon Schottky Diode Performance

Küçük Resim Yok

Tarih

2016

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Electrochemical Soc Inc

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

Au/n-Si/Graphene/Au Schottky diodes were fabricated by transferring atmospheric pressure chemical vapor deposited (APCVD) graphene on silicon substrates. Graphene/n-Si interface properties were improved by using 5-[(3-methylphenyl)(phenyl) amino] isophthalic acid (MePIFA) and 5-(diphenyl) amino] isophthalic acid (DPIFA) aromatic self-assembled monolayer (SAM) molecules. The surface morphologies of modified and non-modified films were investigated by atomic force microscopy and scanning electron microscopy. The surface potential characteristics were obtained by Kelvin-probe force microscopy and found as 0.158 V, 0.188 V and 0,383 V as a result of SAMs modification. The ideality factors of n-Si/Graphene, n-Si/MePIFA/Graphene and n-Si/DPIFA/Graphene diodes were found as 1.07, 1.13 and 1.15, respectively. Due to the chain length of aromatic organic MePIFA and DPIFA molecules, also the barrier height phi(B) values of the devices were decreased. While the barrier height of n-Si/Graphene diode was obtained as 0.931 eV, n-Si/MePIFA/Graphene and n-Si/DPIFA/Graphene diodes have barrier height of 0.820 and 0.720 eV, respectively. (C) 2016 The Electrochemical Society. All rights reserved.

Açıklama

Anahtar Kelimeler

Kaynak

Ecs Journal of Solid State Science and Technology

WoS Q Değeri

Q2

Scopus Q Değeri

Q3

Cilt

5

Sayı

7

Künye