Çok boyutlu sağkalım verilerinde denetimli temel bileşenler analizine alternatif bir boyut indirgeme yaklaşımı
Yükleniyor...
Tarih
2012
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Ege Üniversitesi
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
Bu çalışmada, boyut indirgemede kullanılan denetimli temel bileşenler analizi (D-TBA) ile bu yönteme alternatif bir yaklaşım olarak önerilen sağkalım ağacıyla gen seçerek uygulanan yapay sinir ağlarıyla doğrusal olmayan temel bileşenler analizinin (sağkalım ağacı temelinde YSA-DOTBA) performanslarının karşılaştırılması amaçlanmıştır. D-TBA'da, çok boyutlu gen ekspresyon verilerinden önemli genlerin belirlenmesinde Cox skorlar kullanılmıştır. Cox skorlara göre önemli olduğu belirlenen genler tekil değer ayrışması ile 3 temel bileşene indirgenmiştir. Sağkalım ağacı temelinde YSA-DOTBA yaklaşımında, önemli genlerin belirlenmesinde ise sağkalım ağacının önemlilik değerleri kullanılmıştır. Sağkalım ağacıyla önemli bulunan genler YSA'da girdi değişkeni olarak alınarak, 3 temel bileşene indirgenmiştir. D-TBA'nın varyans açıklama oranı %18.2, sağkalım ağacı temelinde YSA-DOTBA'nın varyans açıklama oranı %35.1 bulunmuştur. D-TBA ve sağkalım ağacı temelinde YSA-DOTBA'nın performansları Cox regresyon modeli (CRM) ile karşılaştırılmıştır. Elde edilen Cox regresyon modellerini karşılaştırmak için de ROC eğrileri ve C indeks hesaplanmıştır. İki modelin ROC eğrileri arasında istatistiksel olarak önemli bir fark bulunamamıştır. C indeks sonuçlarına göre, CRM-1 için tahmin edilen ve gözlenen bağımlı değişkenler arasındaki uyumun olasılığı CRM-2 için tahmin edilen ve gözlenen bağımlı değişkenler arasındaki uyumun olasılığından daha yüksektir. D-TBA'dan elde edilen temel bileşenlerin bağımsız değişken olarak alındığı CRM sonuçları sağkalım ağacı temelinde YSA-DOTBA'dan elde edilen temel bileşenlerin bağımsız değişken olarak alındığı CRM sonuçlarından biraz daha iyi çıkmıştır. Sonuç olarak D-TBA, sadece doğrusal ilişkileri göz önüne alırken, sağkalım ağacı temelinde YSA-DOTBA, doğrusal olmayan ilişkileri de dikkate alması ve daha fazla varyans açıklayıcılığına sahip olması açısından D-TBA'ya alternatif bir yöntem olarak değerlendirilmelidir.
Açıklama
Anahtar Kelimeler
Boyut indirgeme, cox regresyon, denetimli temel bileşenler, yapay sinir ağları ile doğrusal olmayan temel bileşenler, gen ekspresyon verileri., Dimension reduction, cox regression, supervised principal components, nonlinear principal components with artificial neural networks, gene expression data., İstatistik A.B.D.