Channel Estimation with Fully Connected Deep Neural Network

dc.authoridSokullu, Radosveta/0000-0002-3544-0319
dc.authorscopusid24725434900
dc.authorscopusid57197579380
dc.authorwosidSokullu, Radosveta/AAD-8071-2019
dc.contributor.authorSokullu, Radosveta
dc.contributor.authorYildirim, Mete
dc.date.accessioned2023-01-12T19:50:54Z
dc.date.available2023-01-12T19:50:54Z
dc.date.issued2022
dc.departmentN/A/Departmenten_US
dc.description.abstractIn this study, we focus on realizing channel estimation using a fully connected deep neural network. The data aided estimation approach is employed. We assume the transmission channel is Rayleigh and it is constant over the duration of a symbol plus pilot transmission. We develop and tune the deep learning model for various size of pilot data that is known to the receiver and used for channel estimation. The deep learning models are trained on the Rayleigh channel. The performance of the model is discussed for various size of pilot by providing Bit Error Rate of the model. The Bit Error Rate performance of the model is compared to theoretical upper bound which shows that the model successfully estimates the channel.en_US
dc.identifier.doi10.1007/s11277-022-09657-3
dc.identifier.endpage2317en_US
dc.identifier.issn0929-6212
dc.identifier.issn1572-834X
dc.identifier.issn0929-6212en_US
dc.identifier.issn1572-834Xen_US
dc.identifier.issue3en_US
dc.identifier.scopus2-s2.0-85125071556en_US
dc.identifier.scopusqualityQ2en_US
dc.identifier.startpage2305en_US
dc.identifier.urihttps://doi.org/10.1007/s11277-022-09657-3
dc.identifier.urihttps://hdl.handle.net/11454/76191
dc.identifier.volume125en_US
dc.identifier.wosWOS:000759393700001en_US
dc.identifier.wosqualityQ3en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.ispartofWireless Personal Communicationsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectChannel estimationen_US
dc.subjectDeep learningen_US
dc.subjectMachine learningen_US
dc.subjectRayleigh channelen_US
dc.titleChannel Estimation with Fully Connected Deep Neural Networken_US
dc.typeArticleen_US

Dosyalar