Channel Estimation with Fully Connected Deep Neural Network

Küçük Resim Yok

Tarih

2022

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Springer

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

In this study, we focus on realizing channel estimation using a fully connected deep neural network. The data aided estimation approach is employed. We assume the transmission channel is Rayleigh and it is constant over the duration of a symbol plus pilot transmission. We develop and tune the deep learning model for various size of pilot data that is known to the receiver and used for channel estimation. The deep learning models are trained on the Rayleigh channel. The performance of the model is discussed for various size of pilot by providing Bit Error Rate of the model. The Bit Error Rate performance of the model is compared to theoretical upper bound which shows that the model successfully estimates the channel.

Açıklama

Anahtar Kelimeler

Channel estimation, Deep learning, Machine learning, Rayleigh channel

Kaynak

Wireless Personal Communications

WoS Q Değeri

Q3

Scopus Q Değeri

Q2

Cilt

125

Sayı

3

Künye