Liquefaction of Beypazarı oil shales and characterization of liquid products
Küçük Resim Yok
Tarih
1995
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Ege Üniversitesi
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
ÖZET Beypazarı bitümlü şistlerinin kullanıldığı bu çalışma, sıvılaştırma ve karakterizasyon olmak üzere iki ana bölümden oluşmaktadır. Sıvılaştırma, ekstraksiyon ve piroliz yöntemleri ile yapılmıştır. Ekstraksiyonlar su ve toluen ile ayrı, ayrı kritik altı ve kritik üstü koşullarda uygulanmıştır. Pirolizler slow ve flash pirolizler şeklinde yapılmıştır. Optimum ekstraksiyon koşullarını belirlemek amacıyla, kerojenin toplam dönüşümüne(%); Tane iriliği, ekstraksiyon süresi, ekstraksiyon sıcaklığı ve çözücü/katı oranlan gibi parametrelerin etkisi incelenmiştir. Su ile yapılan ekstraksiyon denemelerinde, -3 mm tanecik boyutunda, 60 dakika ekstraksiyon süresinde, 2/3 çözücü/katı oranında 400°C ekstraksiyon sıcaklığında maksimum dönüşüme ulaşılmıştır(%52.6). Toluen ile yapılan ekstraksiyon denemelerinde de -3 mm tanecik boyutunda, 60 dakika ekstraksiyon süresinde, 2/1 çözücü/katı oranında yine 400° C de maksimum bir dönüşüme ulaşılmıştır(34.8%). 500°C de 60 dakika süre ile yapılan slow pirolizde %30.6 dönüşüme ulaşılmıştır. Flash pirolizler üç farklı sıcaklıkta yürütülmüş olup, 600°C de maksimum dönüşüm elde edilmiştir(%37.5). Pirolizlerde de aynı tanecik boyutu kullanılmıştır (-3 mm). Elde edilen maksimum tar verimleri dikkate alındığında su ekstraksiyonunda %22.7(375°C), toluen ekstraksiyonunda %27.0(400°C), slow pirolizde %18.4 (500°C), flash pirolizde %13.4(525°C) tar verimlerine (k.k.b) ulaşılmıştır. SCW ve SCT ekstraksiyonlan arasında toplam dönüşümde gözlenen farklılık, suyun çözücü etkisinin yanında kerojenlede reaksiyona girdiğini göstermektedir. Çalışmanın ikinci bölümünde, dört farklı yöntemle elde edilen sıvı ürünlerin karakterizasyonu incelenmiştir. Önce tarlann asfaltenleri n-pentanla çöktürülmüş ve pentanda çözünen kısımlar(y ağlar), kolon kromatografi ile alifatik, aromatik ve polar fraksiyonlarına ayrılmıştır. Sonra bu fraksiyonlar çeşitli spektroskopik ve kromatografik yöntemlerle karakterize edilmiştir. Su ekstraksiyonunda artan sıcaklık ile tarlann asfalten içerikleri azalmakta, 81polar bileşiklerde önemli aromatiklerde hafif bir artış gözlenmektedir. Alifatiklerinde önemli bir değişiklik olmamaktadır. SCT ektraksiyonunda artan sıcaklık ile asfalten ve polar bileşikler azalmakta alifatik ve aromatik bileşikler artmaktadır. Flash piroliz tarlannda ise artan piroliz sıcaklığı ile asfaltenler ve aromatikler artarken alifatikler azalmakta polar bileşikler de ise bir değişme olmamaktadır. SCW tadarının ortalama molekül ağırlığı artan sıcaklıkla azalırken, SCT ve flash piroliz tartarının ortalama molekül ağırlığı sıcaklıkla önce artmakta sonra azalmaktadır. Su ekstraksiyonu tartarının alifatik fraksiyonlanndaki toplam n-alkan miktarları artan sıcaklık ile artarken iso alkan miktarları azalmaktadır. Suyun kritik sıcaklığında (375°C) %50.0 n-alkan %50.0 iso alkan ele geçmektedir. Düşük sıcaklıklarda çok az miktarda gözlenen a-olefinler ise artan sıcaklıkla suyun reaksiyona girmesi sonucu, kaybolmuştur. SCT tartarının alifatik fraksiyonlanndaki n-alkan içerikleri artan sıcaklık ile artıp 375-400°C aralığında bir maksimumdan geçtikten sonra hızla azalmaktadır. Iso-alkanlar ise tam tersi olarak önce azalmakta ve bu sıcaklık aralığından sonra hızla artmaktadır, a-olefinlerde ise sıcaklık artışı ile önemli bir değişiklik gözlenmemiştir. Slow ve flash pirolizde ise beklenildiği gibi daha yüksek oranda a-olefinler oluşmaktadır. Flash pirolizde sıcaklık artışı ile a-olefin miktarında artış gözlenmektedir. Piroliz süresinin uzun olması nedeniyle slow pirolizde flash pirolize kıyasla daha az a-olefin oluşmaktadır. Tüm tartarın aromatik fraksiyonlarının tespit edilen H/C (atomik) oranlarına göre sıcaklık artışı ile yapının mono substitüsyona doğru kaydığı gözlenmiştir. Aromatik fraksiyonların GC-MS analizinden benzen, naftalin benzotiofen inden, bifenil, flören fenantren ve türevlerinin varlığı saptanmıştır. Polar fraksiyonların İR ve İH-NMR sonuçlarından, SCW, SCT ekstraksiyonlarında 375°C den sonra, flash pirolizde ise 500°C den sonra dekarboksilasyon ve dehidrojenasyon reaksiyonlarının olduğu gözlenmiştir. 82
SUMMARY This study which was carried out with Beypazarı oil shale consists of two main parts as liquefaction and characterization. Extraction and pyrolysis techniques were used for liquefaction process. Extractions were carried out with water and toluene separately under sub and supercritical conditions. Pyrolysis were performed as slow and flash pyrolysis. In order to assess optimum extraction conditions, the influence of the following extraction parameters on the total conversion degree of kerogen was investigated; oil shale particle size, extraction duration, extraction temperature and solvent/solid ratio. In water extraction experiments, crushed particles (-3 mm) of oil shale with 2/3 of solvent/solid ratio was extracted for 60 min extraction time. A maximum conversion degree of kerogen was obtained at 400°C extraction temperature as 52.6%. In toluene extraction experiments, crushed particles (-3 mm) of oil shale samples with 2/1 of solvent/solid ratio was subjected to extraction for 60 min; a maximum conversion was reached again at 400°C as 34.8%. Slow pyrolysis which was held for 60 min at 500°C gave a 30.6% of conversion degree. Flash pyrolysis were carried out at three different temperatures. The maximum conversion was obtained at 600°C as 37.5%. Same particle size were used for pyrolysis (-3 mm). When maximum tar yields obtained (daf basis) are considered; these are 22.7% (3750Q, 27.0%(400<>C), 18.4%(500°C), 13.4%(525°C) for water extraction, toluene extraction, slow pyrolysis, flash pyrolysis respectively. The difference seen on the conversion degrees of SCW and SCT extractions, indicate that SCW not only act as a good solvent, it alsoreacts with kerogen dining the extraction. In the second part of this study characterization of liquid products obtained by four different techniques was investigated. 79The asphaltenes of the tars were precipitated with n-pentane first. The pentane soluble parts (oils) were separated by column chromatography to obtain aliphatic, aromatic and polar fractions. Then, these fractions were characterized by several chromatography and spectroscopic methods. In the water extraction tars, asphaltene content decreased and a significant increase was observed in polar content with increasing temperatures. Aromatic content slightly increased whereas aliphatics gave no significant change as temparature increased. In SCT extraction tars, asphaltene and polar contents decreased whereas aliphatic and aromatic content increased with increasing temperature. As temperature increased flash pyrolysis tar gave a high proportion of asphaltene content and aromatic content increased, aliphatic decreased. No significant change was observed in polar content with increasing temperature. The Avarage MW of water extraction tars decreased with increasing temp, however, the avarage MW of toluene extraction tars and flash pyrolysis tars increased first then markedly decreased as temperature increased. The proportion of total n-alkane in the aliphatic fractions of water extraction tars increased whereas iso alkanes decreased as temperature increased. At the critical temperatures of water (375°C), 50% of n-alkanes and 50% of iso alkanes were obtoined in the aliphatic fractions; no a-olefines were observed. The disapparance of a-olefins due to the water acts as a reactant. In the aliphatic fractions of SCT extracts, n-alkane content increased with increasing temperature and reached a maximum between 375-400° C then sharply decreased. In contrast, iso alkanes decreased between 375-400°C first, then sharply increased. No significant difference was noticed in a-olefin content with increasing temperature. Slow and flash pyrolysis tars gave a higher proportion of a-olefins than those from extractions as expected. In flash pyrolysis as temperature increased, a-olefin content of the tars increased. By comparing with flash pyrolysis, slow pyrolysis comprises a relatively lower proportion of a-olefins as a result of longer pyrolysis time. It was observed that atomic H/C ratios of aromatic fractions of all the tars shift towards monosubstituted structure as temperature increased. The GC-MS analysis of aromatic fractions showed the existence of benzene, naphthalene benzothiophene, indene, biphenyl, fluorene phenanthrene and their derivatives. In the IR and İH-NMR results of polar fractions; it was observed that decarboxylation and dehydrogenation reactions take place above 375°C, during the extractions whereas these reactions occur above 500°C during the flash pyrolysis. 80
SUMMARY This study which was carried out with Beypazarı oil shale consists of two main parts as liquefaction and characterization. Extraction and pyrolysis techniques were used for liquefaction process. Extractions were carried out with water and toluene separately under sub and supercritical conditions. Pyrolysis were performed as slow and flash pyrolysis. In order to assess optimum extraction conditions, the influence of the following extraction parameters on the total conversion degree of kerogen was investigated; oil shale particle size, extraction duration, extraction temperature and solvent/solid ratio. In water extraction experiments, crushed particles (-3 mm) of oil shale with 2/3 of solvent/solid ratio was extracted for 60 min extraction time. A maximum conversion degree of kerogen was obtained at 400°C extraction temperature as 52.6%. In toluene extraction experiments, crushed particles (-3 mm) of oil shale samples with 2/1 of solvent/solid ratio was subjected to extraction for 60 min; a maximum conversion was reached again at 400°C as 34.8%. Slow pyrolysis which was held for 60 min at 500°C gave a 30.6% of conversion degree. Flash pyrolysis were carried out at three different temperatures. The maximum conversion was obtained at 600°C as 37.5%. Same particle size were used for pyrolysis (-3 mm). When maximum tar yields obtained (daf basis) are considered; these are 22.7% (3750Q, 27.0%(400<>C), 18.4%(500°C), 13.4%(525°C) for water extraction, toluene extraction, slow pyrolysis, flash pyrolysis respectively. The difference seen on the conversion degrees of SCW and SCT extractions, indicate that SCW not only act as a good solvent, it alsoreacts with kerogen dining the extraction. In the second part of this study characterization of liquid products obtained by four different techniques was investigated. 79The asphaltenes of the tars were precipitated with n-pentane first. The pentane soluble parts (oils) were separated by column chromatography to obtain aliphatic, aromatic and polar fractions. Then, these fractions were characterized by several chromatography and spectroscopic methods. In the water extraction tars, asphaltene content decreased and a significant increase was observed in polar content with increasing temperatures. Aromatic content slightly increased whereas aliphatics gave no significant change as temparature increased. In SCT extraction tars, asphaltene and polar contents decreased whereas aliphatic and aromatic content increased with increasing temperature. As temperature increased flash pyrolysis tar gave a high proportion of asphaltene content and aromatic content increased, aliphatic decreased. No significant change was observed in polar content with increasing temperature. The Avarage MW of water extraction tars decreased with increasing temp, however, the avarage MW of toluene extraction tars and flash pyrolysis tars increased first then markedly decreased as temperature increased. The proportion of total n-alkane in the aliphatic fractions of water extraction tars increased whereas iso alkanes decreased as temperature increased. At the critical temperatures of water (375°C), 50% of n-alkanes and 50% of iso alkanes were obtoined in the aliphatic fractions; no a-olefines were observed. The disapparance of a-olefins due to the water acts as a reactant. In the aliphatic fractions of SCT extracts, n-alkane content increased with increasing temperature and reached a maximum between 375-400° C then sharply decreased. In contrast, iso alkanes decreased between 375-400°C first, then sharply increased. No significant difference was noticed in a-olefin content with increasing temperature. Slow and flash pyrolysis tars gave a higher proportion of a-olefins than those from extractions as expected. In flash pyrolysis as temperature increased, a-olefin content of the tars increased. By comparing with flash pyrolysis, slow pyrolysis comprises a relatively lower proportion of a-olefins as a result of longer pyrolysis time. It was observed that atomic H/C ratios of aromatic fractions of all the tars shift towards monosubstituted structure as temperature increased. The GC-MS analysis of aromatic fractions showed the existence of benzene, naphthalene benzothiophene, indene, biphenyl, fluorene phenanthrene and their derivatives. In the IR and İH-NMR results of polar fractions; it was observed that decarboxylation and dehydrogenation reactions take place above 375°C, during the extractions whereas these reactions occur above 500°C during the flash pyrolysis. 80
Açıklama
Bu tezin, veri tabanı üzerinden yayınlanma izni bulunmamaktadır. Yayınlanma izni olmayan tezlerin basılı kopyalarına Üniversite kütüphaneniz aracılığıyla (TÜBESS üzerinden) erişebilirsiniz.
Anahtar Kelimeler
Kimya, Chemistry, Ankara-Beypazarı, Ankara-Beypazarı, Bitümlü şistler, Oil shales, Piroliz, Pyrolysis, Sıvılaşma, Liquefaction, Çözücü özütlemesi, Solvent extraction