Miscanthus-Derived Energy Storage System Material Production

Küçük Resim Yok

Tarih

2023

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Amer Chemical Soc

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

Carbon derived from various biomass sources has been evaluated as support material for thermal energy storage systems. However, process optimization of Miscanthus-derived carbon to be used for encapsulating phase change materials has not been reported to date. In this study, process optimization to evaluate the effects of selected operation parameters of pyrolysis time, temperature, and biomass:catalyst mass ratio on the surface area and pore volume of produced carbon is conducted using response surface methodology. In the process, ZnCl2 is used as a catalyst to promote high pore volume and area formation. Two sets of optimum conditions with different pyrolysis operation parameters in order to produce carbons with the highest pore area and volume are determined as 614 degrees C, 53 min, and 1:2 biomass to catalyst ratio and 722 degrees C, 77 min, and 1:4 biomass to catalyst ratio with 1415.4 m2/g and 0.748 cm3/g and 1499.8 m2/g and 1.443 cm3/g total pore volume, respectively. Carbon material produced at 614 degrees C exhibits mostly micro-and mesosized pores, while carbon obtained at 722 degrees C comprises mostly of meso-and macroporous structures. Findings of this study demonstrate the significance of process optimization for designing porous carbon material to be used in thermal and electrochemical energy storage systems.

Açıklama

Anahtar Kelimeler

Activated Carbons, X Giganteus, Surface Characterization, Optimization, Performance, Composites, Conversion, Behavior, Biomass, Zncl2

Kaynak

ACS Omega

WoS Q Değeri

Q2

Scopus Q Değeri

Q1

Cilt

Sayı

Künye