Güneş enerjisiyle tarımsal ürünlerin kurutulmasında kullanılacak endüstriyel kurutucu tasarımı
Küçük Resim Yok
Tarih
1992
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Ege Üniversitesi
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
215 Kurutucunun kapalı devre çalışabilmesi için arka ve alt kısmında 50 nan genişliğinde kanal yapılmış olup hava ısıtıcında ısınan hava raflardan geçtikten sonra arka kanaldan alt kanala gelmekte buradan 100 mm çaplı iki adet cam yünü ve naylon ile izolasyonu yapılmış plastik borudan geçe rek fanın emiş kısımlarına gelmektedir. Kurutucunun açık sistem olarak kullanılabilmesi ve güneş enerjisin den daha fazla yararlanabilmek için ayarlanabilen kapağı bulunan tavan sacının üst kısmına 20.75° eğimli L30x30x3 köşebentten iskelet yapılmış yan yüzeyleri 0.75 mm kalınlığında alüminyum levhalar arasına cam yünü ko nulmuştur.Arka yüzeyde ise 2 mm kalınlığında 30 mm mesafe ile yer leştir i len galvanizli sacların arasına cara yünü yerleştirilmiştir. Ayrıca 50 mm genişliğinde ayarlanabilen kapak yapılmıştır. İskeletin üzerine 4 mm kalın lığında sızdırmazlığı sağlanmış cam konulmuştur. Kurutucunun alt yüzeyine 2 mm kalınlığında iki adet sac yerleştirilmiş ve aralarına 30 mm cam yünü konulmuş, taze havanın girişini sağlamak için ka paklı ve ayarlanabilen ızgara yerleştirilmiş, ızgara içinede izovat dolgu takılarak içeriye tamamen temiz havanın girişi sağlanmıştır, kurutucu imalatı ocak 1992 yılı itibariyle 1.750.000 TL malzeme ve 1.000.000 TL işçilik olmak üzere toplam 2.750.000 TL malolmuştur Kurutma deneyleri hava koşullarına, ışınım miktarına, kapaklar m açık veya kapalı durumlarına bağlı olarak iki ile beş gün arasında sürmüş dört deney sonucunda kurutucu içerisinde kurutulan elmalar ile dış ortamda ku rutulan elmalar hemen hemen aynı zaaanda kurumaktadır lar. Kurama süresine etki yapan en önemli faktörlerden birisi cam yüzeylerde oluşan yoğusma dır. Kurutucu içerisinde bulunan havalandırma kapaklarının yoguşmayı önli214 üzerini kaplayacak şekilde üç sıra halinde üst üste rulosu açılmış ve si yana boyanmış bulaşık teli yerleştirilmiştir. Fan ile sağlanan hava akımı yutucu yüzey ile cam arasında bulunan boşluğun ve tellerin arasından geçmektedir. Yutucu yüzey arkası ve yan kenarları 30 mm cam yünü ile yalıtılmış olup geçirgen örtü malzemesi olarak 4 mm kalınlığında cam kullanılmış tır. Güneşli hava ısıtıcısının kasa malzemesi alüminyum olup, sızdırmazlık contaları, örtü muhafaza kenarlığı ve lastik contaları olarak su ısıtıcılı toplayıcı malzemeleri kullanılmıştır. Hava ısıtıcı girişine fan bir davlumbaz ile bağlanmıştır. Hava ısıtıcısı 900x55 mm ölçülerindeki bir kanal ile kurutucuya eğim açısıda ayarlanabilen menteşeler ile tutturulmuş tur. Kurutucunun 1010x785x955 mm ölçülerinde L30x30x3 demir köşebentten iskeleti yapılmış, arka ve yan yüzey 0.75 mm kalınlığında iki alüminyum levha arasına 30 mm cam yünü konularak kapatılmıştır. Diğer yan yüzey ise 3 mm kalınlığında 785x955x30 mm ölçülerinde içine cam yünü ve iç yüzeye karton yerleştirilerek vede iskelete menteşe ile tutturularak kapak yapılmıştır. ön yüzey aralarında 50 mm mesafe bulunan sac ve camdan oluşmakta dır. sac levha ile cam (4 nen) 150 mm mesafelerle 5 parçaya ayrılmış ve ay rılan bölmelerin sızdırmazığı sağlanarak 5 adet hava ısıtıcısı elde edil mistir. Her hava ısıtıcısı düz levhasında alt ve üstte olmak üzere 5 mm genişliğinde 2 adet kanal yapılmıştır. Kuratucu içine iki sıralı beş katlı 275x937 mm net ölçülerinde 10 adet raf 150 mm mesafelerle yerleştirilmiş olup, hava geçişini kolaylastırmak için çelik kare gözlü (5 mm göz aralığı) elek teli kullanılmıştır. Raflar gerektiğinde ölçümler için çıkarılmak üzere hareketli bırakılmıştır.215 Kurutucunun kapalı devre çalışabilmesi için arka ve alt kısmında 50 nan genişliğinde kanal yapılmış olup hava ısıtıcında ısınan hava raflardan geçtikten sonra arka kanaldan alt kanala gelmekte buradan 100 mm çaplı iki adet cam yünü ve naylon ile izolasyonu yapılmış plastik borudan geçerek fanın emiş kısımlarına gelmektedir. Kurutucunun açık sistem olarak kullanılabilmesi ve güneş enerjisin den daha fazla yararlanabilmek için ayarlanabilen kapağı bulunan tavan sacının üst kısmına 20.75° eğimli L30x30x3 köşebentten iskelet yapılmış yan yüzeyleri 0.75 mm kalınlığında alüminyum levhalar arasına cam yünü konulmuştur.Arka yüzeyde ise 2 mm kalınlığında 30 mm mesafe ile yerleştirilen galvanizli sacların arasına cara yünü yerleştirilmiştir. Ayrıca 50 mm genişliğinde ayarlanabilen kapak yapılmıştır. İskeletin üzerine 4 mm kalın lığında sızdırmazlığı sağlanmış cam konulmuştur. Kurutucunun alt yüzeyine 2 mm kalınlığında iki adet sac yerleştirilmiş ve aralarına 30 mm cam yünü konulmuş, taze havanın girişini sağlamak için kapaklı ve ayarlanabilen ızgara yerleştirilmiş, ızgara içinede izovat dolgu takılarak içeriye tamamen temiz havanın girişi sağlanmıştır, kurutucu imalatı ocak 1992 yılı itibariyle 1.750.000 TL malzeme ve 1.000.000 TL işçilik olmak üzere toplam 2.750.000 TL malolmuştur Kurutma deneyleri hava koşullarına, ışınım miktarına, kapaklar m açık veya kapalı durumlarına bağlı olarak iki ile beş gün arasında sürmüş dört deney sonucunda kurutucu içerisinde kurutulan elmalar ile dış ortamda ku rutulan elmalar hemen hemen aynı zamanda kurumaktadırlar. Kurama süresine etki yapan en önemli faktörlerden birisi cam yüzeylerde oluşan yoğusma dır. Kurutucu içerisinde bulunan havalandırma kapaklarının yoguşmayı önli216 yecek şekilde ayarlarının yapılması durumunda kuruna zamanı iki ile üç günde tamamlanabilmektedir. Kurutucu içerisinde 37 adet kütle ve enerji bilançosu kurularak bir bilgisayar programı yapılmış kararlı hal için bilinmiyen sıcaklık ile nemlilik değerleri her saat için bulunmuştur. Kontrol hacimlerinde teorik olarak bulunan sıcaklık değerleri ile deneyde ölçülen sıcaklık değerleri uyumlu olmasına rağmen arka kanal sıcaklıkları ve günlük buharlaşan nem miktarları- cam yüzeylerindeki yoguşmadan ve ürün taşınım katsayısının uygun olmamasından dolayı istenen uyumlulukta olmamıştır. Yoguşmanın giderilmesi, uygun taşınım katsayısının bulunması,ön cam yüzeyin hafif eğimli olması, ara bölmelerin kaldırılması veya en az gölge oluşturacak biçimde yeniden tasarlanması, raflar arasına saptırıcı konulması durumunda kurutma sürelerinin kısalacağı ve teorik sonuçlarla deneysel sonuçların uyumlu olacağı düşünülebilir. _y
217 13. SUMMARY In our country, the great part of agricultural products is preserved by- drying. The technology used for treatment of agricultural products is not at desired level although the production is at high level. Solar energy is used for drying agricultural products widely. For this purpose, a forced convection industrial type dryer, which can operate as both open system and recirculation system, has been designed and constructed. For this dryer the slope of air heating collector can be changed and the front and the top parts of dryer are used to heat air. Air temperature and moisture can be controlled by giving fresh air. Apples were peeled, stoned, slitted and submerged in a dilute sodium bisulfite solution of %2 concentration. The apple slices whose total weight is 2.5 kg were spread on each shelf and these were dried under different conditions in four individual experiments. The results obtained from these experiments were compared with the results of natural drying experiments carried out under the same radia tion conditions in terms of drying rate and product quality. During the experiment temperature, moisture and mass measurements were made at different points of the dryer. The radiation intensity and wind speed were also measured and recorded. The results are con^ared with the theoretical values obtained from the energy and mass balances. At the front part of the dryer there is an air heating collector with a size of 936x1936x102 mm. The net area of the transparent cover of this collector is 1.65 m"2. There is a radial fan of 50 W power at the front of218 the collector. The absorber plate of air collector is a metal sheet. On this sheet there are three layers of blacken matrix. The air stream supp lied by the fan flows through the space between the cover glass and the absorber sheet. The back surface and lateral surface of the absorber sheet were isolated by glass wool with a thickness of 30 mm. The cover glass is of 4 mm thickness. The case of air heating collector was made of aluminum. The insulating packings are the same as used in the conventional collec tors. The fan was connected to the air inlet with a druffi.Air heating col lector was connected to the dryer by a channel with a size of 900x55 mm. The slope of the air heating collector can be changed by hinges. The fra mework of the dryer having a size of 1010x735x955 mm was constructed by using angle iron with a size of L30x30x3. The back surface and lateral surface of the dryer were closed by plac ing 30 mm glass wool between two Aluminum plates whose thicknesses are 0.75 mm. The other lateral surface of the dryer is a flap with a size of 785*955*30 mm and a thickness of 3 mm. The inner side of this flap covered with a millboard plate glass woll was placed between these two plates. The flap was fastened to the framework by hinges. Front surface of the dryer was formed by a metal sheet and a glass plate. The distance between these two plates is 50 mm.The metal sheet and glass plate was divided into 5 parts and 5 individual air heating collector were formed. 2 channells were made at the top and the bottom of the absorber plate of each air heating collector. 10 drying shelves were placed in the dryer in a double sequenced raw on 5 stories. The distance between the stories is 150 mm. To let the air flow219 easily steel screen is used at the shelves. The size of each shelf is 275*937 mm. The shelves are portable. To operate the dryer as a recircu lating system a channel with a width of 50 mm were made in back and bottom parts of the dryer. The hot air passed through the shelves comes to the suction of the fan by means of two plastic pipes after passing the channel. The plastic pipes were isolated by a polyethylene film and a glass well sheet with a diameter of ICO mm. To operate the dryer as an open system and to utilize solar energy more efficiently a framework, which was made of L30x30x3 angle iron and has a slope of 20. 7 5 °, was constructed at the upper part of the ceiling plate. At the lateral surfaces a glass wool sheet were placed between two aluminum plates whose thicknesses are 0.75 mm. At the ceiling plate there is an ad justable flap. At the back surface a glass wool sheet was placed between two galvanized iron plates whose thicknesses are 2 mm. The distance bet ween these two plates is 30 mm. In addition to this, an adjustable flap with a width of 50 mm was made. A glass plate with â thickness of 4 mm was placed on the framework. Two iron sheets, whose thicknesses are 2 mm, were placed on the floor of the dryer and a glass wool sheet with a thickness of 30 mm were put bet ween these two iron sheets. To let the fresh air enter to the dryer an ad justable grid were placed an the floor. In January 1992 the cost of the dryer was 2.750.000 TL.The cost of the material was 1.750.000 TL.The labor cost was 1.000.000 TL. Drying process takes 2 and 5 days depending on the weather conditions, radiation indensity and whether the flaps are open or not. At the end of the experiments it was seen that the drying220 time for drying by losing the dryer and for natural drying are close. One of the most important factors which affects the drying time is the condensation of vapor on the glass surface. In case of adjusting the flaps to prevent the condensation of vapor, the drying process takes 2-3 days. 37 energy and mass balance equations were setup for the dryer. These equations were solved by means of a computer program for steady-state conditions. By assuming steady-state operations these equations were solved to obtain hourly temperature and moisture values for different control volumes of the dryer. Although the theoretical results are consistent with -the experimental results for other control volumes, the temperature values for the control volumes of the back channel and daily evaporated moisture content values are not consistent because of the condensation of vapor and unsuitable convective heat transfer coefficient for the product. In cases of ceasing the condensation, having a suitable heat transfer coefficient for the product and making the dryer to utilize solar energy more effectively, the drying period decreases and thus the theoretical and the experimental results become consistent with each other. T.C. YÜKSEK(V.-. \. DOKÜMANTASYON MEk&üL,
217 13. SUMMARY In our country, the great part of agricultural products is preserved by- drying. The technology used for treatment of agricultural products is not at desired level although the production is at high level. Solar energy is used for drying agricultural products widely. For this purpose, a forced convection industrial type dryer, which can operate as both open system and recirculation system, has been designed and constructed. For this dryer the slope of air heating collector can be changed and the front and the top parts of dryer are used to heat air. Air temperature and moisture can be controlled by giving fresh air. Apples were peeled, stoned, slitted and submerged in a dilute sodium bisulfite solution of %2 concentration. The apple slices whose total weight is 2.5 kg were spread on each shelf and these were dried under different conditions in four individual experiments. The results obtained from these experiments were compared with the results of natural drying experiments carried out under the same radia tion conditions in terms of drying rate and product quality. During the experiment temperature, moisture and mass measurements were made at different points of the dryer. The radiation intensity and wind speed were also measured and recorded. The results are con^ared with the theoretical values obtained from the energy and mass balances. At the front part of the dryer there is an air heating collector with a size of 936x1936x102 mm. The net area of the transparent cover of this collector is 1.65 m"2. There is a radial fan of 50 W power at the front of218 the collector. The absorber plate of air collector is a metal sheet. On this sheet there are three layers of blacken matrix. The air stream supp lied by the fan flows through the space between the cover glass and the absorber sheet. The back surface and lateral surface of the absorber sheet were isolated by glass wool with a thickness of 30 mm. The cover glass is of 4 mm thickness. The case of air heating collector was made of aluminum. The insulating packings are the same as used in the conventional collec tors. The fan was connected to the air inlet with a druffi.Air heating col lector was connected to the dryer by a channel with a size of 900x55 mm. The slope of the air heating collector can be changed by hinges. The fra mework of the dryer having a size of 1010x735x955 mm was constructed by using angle iron with a size of L30x30x3. The back surface and lateral surface of the dryer were closed by plac ing 30 mm glass wool between two Aluminum plates whose thicknesses are 0.75 mm. The other lateral surface of the dryer is a flap with a size of 785*955*30 mm and a thickness of 3 mm. The inner side of this flap covered with a millboard plate glass woll was placed between these two plates. The flap was fastened to the framework by hinges. Front surface of the dryer was formed by a metal sheet and a glass plate. The distance between these two plates is 50 mm.The metal sheet and glass plate was divided into 5 parts and 5 individual air heating collector were formed. 2 channells were made at the top and the bottom of the absorber plate of each air heating collector. 10 drying shelves were placed in the dryer in a double sequenced raw on 5 stories. The distance between the stories is 150 mm. To let the air flow219 easily steel screen is used at the shelves. The size of each shelf is 275*937 mm. The shelves are portable. To operate the dryer as a recircu lating system a channel with a width of 50 mm were made in back and bottom parts of the dryer. The hot air passed through the shelves comes to the suction of the fan by means of two plastic pipes after passing the channel. The plastic pipes were isolated by a polyethylene film and a glass well sheet with a diameter of ICO mm. To operate the dryer as an open system and to utilize solar energy more efficiently a framework, which was made of L30x30x3 angle iron and has a slope of 20. 7 5 °, was constructed at the upper part of the ceiling plate. At the lateral surfaces a glass wool sheet were placed between two aluminum plates whose thicknesses are 0.75 mm. At the ceiling plate there is an ad justable flap. At the back surface a glass wool sheet was placed between two galvanized iron plates whose thicknesses are 2 mm. The distance bet ween these two plates is 30 mm. In addition to this, an adjustable flap with a width of 50 mm was made. A glass plate with â thickness of 4 mm was placed on the framework. Two iron sheets, whose thicknesses are 2 mm, were placed on the floor of the dryer and a glass wool sheet with a thickness of 30 mm were put bet ween these two iron sheets. To let the fresh air enter to the dryer an ad justable grid were placed an the floor. In January 1992 the cost of the dryer was 2.750.000 TL.The cost of the material was 1.750.000 TL.The labor cost was 1.000.000 TL. Drying process takes 2 and 5 days depending on the weather conditions, radiation indensity and whether the flaps are open or not. At the end of the experiments it was seen that the drying220 time for drying by losing the dryer and for natural drying are close. One of the most important factors which affects the drying time is the condensation of vapor on the glass surface. In case of adjusting the flaps to prevent the condensation of vapor, the drying process takes 2-3 days. 37 energy and mass balance equations were setup for the dryer. These equations were solved by means of a computer program for steady-state conditions. By assuming steady-state operations these equations were solved to obtain hourly temperature and moisture values for different control volumes of the dryer. Although the theoretical results are consistent with -the experimental results for other control volumes, the temperature values for the control volumes of the back channel and daily evaporated moisture content values are not consistent because of the condensation of vapor and unsuitable convective heat transfer coefficient for the product. In cases of ceasing the condensation, having a suitable heat transfer coefficient for the product and making the dryer to utilize solar energy more effectively, the drying period decreases and thus the theoretical and the experimental results become consistent with each other. T.C. YÜKSEK(V.-. \. DOKÜMANTASYON MEk&üL,
Açıklama
Bu tezin, veri tabanı üzerinden yayınlanma izni bulunmamaktadır. Yayınlanma izni olmayan tezlerin basılı kopyalarına Üniversite kütüphaneniz aracılığıyla (TÜBESS üzerinden) erişebilirsiniz.
Anahtar Kelimeler
Enerji, Energy, Endüstriyel tasarım, Industrial design, Güneş enerjisi, Solar energy, Kurutma yöntemleri, Drying methods, Kurutucular, Dryers, Tarım ürünleri, Agricultural products