Polyacrylonitrile (PAN)/carbon nanotube (CNT) electrospun nanofibers: synthesis, characterization, their biocompatibility for L929 fibroblast cells and molecular docking studies
Küçük Resim Yok
Tarih
2023
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Taylor and Francis Ltd.
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
There has been an important interest in to use of electrospun nanomaterials for tissue engineering applications due to the excellent scaffold-cell interaction provided by high interconnectivity and high porosity by electrospun nanofibers. In this study, Polyacrylonitrile (PAN) and carbon nanotube-inserted PAN (PAN/CNT) nanofibers were produced by the electrospinning method and characterized by SEM, FT-IR, and EIS spectroscopy. Both PAN and PAN/CNT nanofibers were obtained beadless and ordered with the average fiber diameters of 277.61 ± 43.6 and 171.01 ± 48.4, respectively. The influence of CNT addition on PAN nanofibers was observed with the decrease of diameter and increase of electrical conductivity of nanofibers. Then, the biocompatibility of PAN and PAN/CNT nanofibers was evaluated by the MTT and AO/EB double-staining experiments. It was observed that the nanofibers showed no cytotoxic effect on L929 fibroblast cells. In the docking experiments, while both PAN and PAN/CNT showed energetically favorable interactions (?G = ?4.60 kcal/mol; ?7.26 kcal/mol, respectively) with the membrane bilayer complex, PAN/CNT formed a more stable binding with the cellular membrane compared to PAN alone. Docking results mechanistically support the more effective increase in the proliferation of L929 fibroblasts at high concentrations in vitro, as PAN/CNT exhibits stronger binding affinity and interaction with the cellular membrane. The increase in electrical conductivity of nanofibers influenced the proliferation positively, as well. © 2023 Taylor & Francis Group, LLC.
Açıklama
Anahtar Kelimeler
carbon nanotube (CNT), Electrospinning, L929 fibroblast cells, molecular docking, nanofiber, polyacrylonitrile (PAN), tissue engineering, Binding energy, Biocompatibility, Cell culture, Cell engineering, Electric conductivity, Electrospinning, Fibroblasts, Molecular modeling, Nanofibers, Scaffolds (biology), Tissue, Carbon nanotube, Electrical conductivity, Electrospun nanofibers, Fibroblast cells, L929 fibroblast cell, L929 fibroblasts, Molecular docking, Polyacrylonitrile, Polyacrylonitrile nanofibre, Tissues engineerings, Carbon nanotubes
Kaynak
International Journal of Polymeric Materials and Polymeric Biomaterials
WoS Q Değeri
Scopus Q Değeri
Q2