CENTRALIZERS OF GENERALIZED SKEW DERIVATIONS ON MULTILINEAR POLYNOMIALS

dc.contributor.authorAlbas, E.
dc.contributor.authorArgac, N.
dc.contributor.authorDe Filippis, V.
dc.date.accessioned2019-10-27T11:22:40Z
dc.date.available2019-10-27T11:22:40Z
dc.date.issued2017
dc.departmentEge Üniversitesien_US
dc.description.abstractLet R be a prime ring of characteristic different from 2, let Q be the right Martindale quotient ring of R, and let C be the extended centroid of R. Suppose that G is a nonzero generalized skew derivation of R and f(x (1),..., x (n) ) is a noncentral multilinear polynomial over C with n noncommuting variables. Let f(R) = {f(r (1),..., r (n) ): r (i) is an element of R} be the set of all evaluations of f(x (1),..., x (n) ) in R, while A = {[G (f(r (1),..., r (n) )), f(r (1),..., r (n) )]: r (i) is an element of R}, and let C (R) (A) be the centralizer of A in R; i.e., C (R) (A) = {a is an element of R: [a, x] = 0, for all (x) is an element of A }. We prove that if A not equal (0), then C (R) (A) = Z(R).en_US
dc.identifier.doi10.1134/S0037446617010013
dc.identifier.endpage10en_US
dc.identifier.issn0037-4466
dc.identifier.issn1573-9260
dc.identifier.issn0037-4466en_US
dc.identifier.issn1573-9260en_US
dc.identifier.issue1en_US
dc.identifier.startpage1en_US
dc.identifier.urihttps://doi.org/10.1134/S0037446617010013
dc.identifier.urihttps://hdl.handle.net/11454/33067
dc.identifier.volume58en_US
dc.identifier.wosWOS:000396065100001en_US
dc.identifier.wosqualityQ3en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.language.isoenen_US
dc.publisherMaik Nauka/Interperiodica/Springeren_US
dc.relation.ispartofSiberian Mathematical Journalen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectpolynomial identityen_US
dc.subjectgeneralized skew derivationen_US
dc.subjectprime ringen_US
dc.titleCENTRALIZERS OF GENERALIZED SKEW DERIVATIONS ON MULTILINEAR POLYNOMIALSen_US
dc.typeArticleen_US

Dosyalar