CENTRALIZERS OF GENERALIZED SKEW DERIVATIONS ON MULTILINEAR POLYNOMIALS

Küçük Resim Yok

Tarih

2017

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Maik Nauka/Interperiodica/Springer

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

Let R be a prime ring of characteristic different from 2, let Q be the right Martindale quotient ring of R, and let C be the extended centroid of R. Suppose that G is a nonzero generalized skew derivation of R and f(x (1),..., x (n) ) is a noncentral multilinear polynomial over C with n noncommuting variables. Let f(R) = {f(r (1),..., r (n) ): r (i) is an element of R} be the set of all evaluations of f(x (1),..., x (n) ) in R, while A = {[G (f(r (1),..., r (n) )), f(r (1),..., r (n) )]: r (i) is an element of R}, and let C (R) (A) be the centralizer of A in R; i.e., C (R) (A) = {a is an element of R: [a, x] = 0, for all (x) is an element of A }. We prove that if A not equal (0), then C (R) (A) = Z(R).

Açıklama

Anahtar Kelimeler

polynomial identity, generalized skew derivation, prime ring

Kaynak

Siberian Mathematical Journal

WoS Q Değeri

Q3

Scopus Q Değeri

Cilt

58

Sayı

1

Künye