CENTRALIZERS OF GENERALIZED SKEW DERIVATIONS ON MULTILINEAR POLYNOMIALS
Küçük Resim Yok
Tarih
2017
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Maik Nauka/Interperiodica/Springer
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
Let R be a prime ring of characteristic different from 2, let Q be the right Martindale quotient ring of R, and let C be the extended centroid of R. Suppose that G is a nonzero generalized skew derivation of R and f(x (1),..., x (n) ) is a noncentral multilinear polynomial over C with n noncommuting variables. Let f(R) = {f(r (1),..., r (n) ): r (i) is an element of R} be the set of all evaluations of f(x (1),..., x (n) ) in R, while A = {[G (f(r (1),..., r (n) )), f(r (1),..., r (n) )]: r (i) is an element of R}, and let C (R) (A) be the centralizer of A in R; i.e., C (R) (A) = {a is an element of R: [a, x] = 0, for all (x) is an element of A }. We prove that if A not equal (0), then C (R) (A) = Z(R).
Açıklama
Anahtar Kelimeler
polynomial identity, generalized skew derivation, prime ring
Kaynak
Siberian Mathematical Journal
WoS Q Değeri
Q3
Scopus Q Değeri
Cilt
58
Sayı
1