Frame Detection with Deep Learning

dc.contributor.authorYıldırım, Mete
dc.contributor.authorSokullu, Radosveta
dc.date.accessioned2023-01-12T20:29:17Z
dc.date.available2023-01-12T20:29:17Z
dc.date.issued2021
dc.departmentN/A/Departmenten_US
dc.description.abstractDeep learning has become a way of solution for the realization of complex computations. As electronic communication starts to use more complex channels, the systems need to handle tough computations. For this reason, research on the use of deep learning in communication has increased recently. These researches aim to realize many applications used in communication with deep learning. Frame detection is one of the first things a receiver must handle and it may require a lot of hard computations. Deep learning-based frame detection can be an alternative approach. This study aims to build models that perform frame detection with deep learning. The proposed models provide the performance of correlation-based frame receivers commonly used for frame detection. The mean square root error of the prediction deviation is used as an evaluation metric to compare the proposed model to classic systems.en_US
dc.identifier.doi10.18466/cbayarfbe.693942
dc.identifier.endpage213en_US
dc.identifier.issn1305-130X
dc.identifier.issn1305-1385
dc.identifier.issue2en_US
dc.identifier.startpage209en_US
dc.identifier.trdizinid493704en_US
dc.identifier.urihttps://doi.org/10.18466/cbayarfbe.693942
dc.identifier.urihttps://search.trdizin.gov.tr/yayin/detay/493704
dc.identifier.urihttps://hdl.handle.net/11454/80419
dc.identifier.volume17en_US
dc.indekslendigikaynakTR-Dizinen_US
dc.language.isoenen_US
dc.relation.ispartofCelal Bayar Üniversitesi Fen Bilimleri Dergisien_US
dc.relation.publicationcategoryMakale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectcorrelatoren_US
dc.subjectdeep learningen_US
dc.subjectCommunicationen_US
dc.subjectneural networken_US
dc.subjectframe detectionen_US
dc.titleFrame Detection with Deep Learningen_US
dc.typeArticleen_US

Dosyalar