A theoretical way to determine gamma-ray mass attenuation coe?cients of materials
Küçük Resim Yok
Tarih
2015
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
The gamma-ray mass attenuation coefficients of various absorber materials such as Ag, Al, Au, Bakelite, Cu, Fe, Pb, Plexiglas, Si, Sn, water, and Zn were determined theoretically at different gamma-ray energies and different absorber thicknesses in order to investigate how the number of gamma photons and their energies affect the calculation of mass attenuation coefficients of the absorbers since no study such a comprehensive work here was encountered. For this purpose,the FLUKA Monte Carlo (MC) and XCOM programs were used. Calculated coefficients were compared to the literature values and found to agree well with them. The FLUKA MC program was successful in the calculation of gamma-ray mass attenuation coefficients of materials as was XCOM. The coefficient results were affected by the number of incident gamma photons in the calculation, and a high incident photon number was suggested.
The gamma-ray mass attenuation coefficients of various absorber materials such as Ag, Al, Au, Bakelite, Cu, Fe, Pb, Plexiglas, Si, Sn, water, and Zn were determined theoretically at different gamma-ray energies and different absorber thicknesses in order to investigate how the number of gamma photons and their energies affect the calculation of mass attenuation coefficients of the absorbers since no study such a comprehensive work here was encountered. For this purpose,the FLUKA Monte Carlo (MC) and XCOM programs were used. Calculated coefficients were compared to the literature values and found to agree well with them. The FLUKA MC program was successful in the calculation of gamma-ray mass attenuation coefficients of materials as was XCOM. The coefficient results were affected by the number of incident gamma photons in the calculation, and a high incident photon number was suggested.
The gamma-ray mass attenuation coefficients of various absorber materials such as Ag, Al, Au, Bakelite, Cu, Fe, Pb, Plexiglas, Si, Sn, water, and Zn were determined theoretically at different gamma-ray energies and different absorber thicknesses in order to investigate how the number of gamma photons and their energies affect the calculation of mass attenuation coefficients of the absorbers since no study such a comprehensive work here was encountered. For this purpose,the FLUKA Monte Carlo (MC) and XCOM programs were used. Calculated coefficients were compared to the literature values and found to agree well with them. The FLUKA MC program was successful in the calculation of gamma-ray mass attenuation coefficients of materials as was XCOM. The coefficient results were affected by the number of incident gamma photons in the calculation, and a high incident photon number was suggested.
Açıklama
Anahtar Kelimeler
Fizik, Uygulamalı
Kaynak
Turkish Journal of Physics
WoS Q Değeri
Scopus Q Değeri
Cilt
39
Sayı
2