Mikroalglerden biyojenik nanopartiküllerin sentezlenmesi ve kullanım potansiyelinin araştırılması
Yükleniyor...
Tarih
2020
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Ege üniversitesi, Fen Bilimleri Enstitüsü
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
Biyolojik sentezleme yöntemleriyle üretilen nanopartiküller, biyouyumlu, çevre ile dost ve artan biyoaktivite özelikleriyle avantaj sağlamakta ve önemli kullanım alanları oluşturmaktadır. Mikroalgler de nanopartiküllerin biyolojik sentezinde yeni, uygulanabilirliği henüz optimize edilmemiş; biyouyumluğu daha yüksek bir alternatif olarak karşımıza çıkan biyolojik sistemlerdir. Bu tez çalışması kapsamında, değerli metabolitler açısından zengin, laboratuvar koşullarında kolay üretilebilen 4 farklı mikroalg türü kullanılarak (Porphyridium cruentum, Schizochytrium sp., Galdieria sulphuraria, Phaeodactylum tricornutum) biyojenik nanopartikül sentezlenmesi, üretim optimizasyonu ve biyoteknolojik kullanım potansiyellerinin araştırılması hedeflenmiştir. Bu amaç doğrultusunda, her türlü kimyasal ve biyolojik üretim prosesine kolaylıkla adapte olabilecek Foto-Biyojenik Nanopartikül (FBNP) sentez reaktörü tasarımı gerçekleştirilmiştir. Yüzey Yanıt Yöntemleri (RSM) kullanılarak, biyojenik nanopartikül sentezinde, harmonik ortalama partikül çapı üzerine etkili olduğu düşünülen faktörler olan metal konsantrasyonu, metal: süpernatant ve biyokütle oranı, pH, inkübasyon süresi ve karıştırma hızına göre optimizasyonlar gerçekleştirilmiştir. Bu çalışmalarda optimum sonuçları veren Phaeodactylum tricornutum süpernatantı ile FBNP reaktör sisteminde 150 mL'lik çalışma hacminde pH, inkübasyon süresi ve karıştırma hızı optimizasyonu tamamlanmış ve 7,5 pH değerinde 300 rpm karıştırma hızında yaklaşık 1 saatlik inkübasyon süresi sonunda 130 nm çapında nanopartikül üretilmiştir. Daha sonra nanopartükülllerin stabilitesini korumak ve biyoteknolojik kullanım potansiyelini de arttırmak amacıyla kitosan çözeltisi ile 1:1 oranında kaplama işlemi yapılmıştır. Kaplanmış nanopartikülllerin karakterizasyonu yapılarak, biyoteknolojik kullanım potansiyelinin ortaya konması amacıyla sitotoksisite ve genotoksisite testleri gerçekleştirilmiştir. Bu yaklaşımla hücresel aktivitede %50 inhibisyon belirlenmiş, antimikrobiyal aktivite testlerinde de 10-13 mm zon tespit edilmiştir. Nanopartiküllerin %99 oranında antistatik özellik gösterdiği belirlenmiş ve bu durum olası antimikrobiyal, antistatik çalışmalarda gelecek vaat etmiştir. Oluşturulan biyojenik, antistatik, antimikrobiyal özelliklere sahip potansiyel nanopartiküller, biyomedikal uygulamalarda (ilaç salınım sistemleri, biyosensör, hipertermi, görüntüleme teknikleri, vb), immun sistem çalışmalarında, kanser tedavileri ve katalitik uygulamalarda yer alabilecektir.
Nanoparticles, produced by biological synthesis methods, provide advantages such as biocompatibility, environmentally friendly, increasing bioactivity properties and create important usage areas. Microalgae are open to improvement and undiscovered biological systems that have just begun to encounter in the biological synthesis of nanoparticles, which are biocompatible, eco-friendly and offer an alternative and more biocompatible approach. In this thesis, the aim is to investigate biogenic nanoparticle synthesis from different microalgae species, namely Porphyridium cruentum, Schizochytrium sp., Galdieria sulphuraria, Phaeodactylum tricornutum that are having rich metabolite content and easily produced in laboratory conditions. For this purpose, a Photo-Biogenic Nanoparticle (PBNP) synthesis reactor has been designed in order to make the optimization under controllable conditions. This reactor has been designed in such a way that it can easily be adapted to chemical and biological processes and also be used as a photobioreactor. During the optimization of biological nanoparticle synthesis; metal concentrations, metal:supernatant and biomass ratios, pH, incubation time, and stirring rate variables were investigated. Experimental designs were carried out using Central Composite Design (CCD) of Response Surface Methodology (RSM) in Design Expert software. With the Phaeodactylum tricornutum supernatant, which gives optimum results in these studies, the optimization of nanoparticle synthesis was completed after a 1-hour incubation period at a pH of 7.5 at 300 rpm in the PBNP reactor system with a working volume of 150 mL. The average nanoparticle size synthesized in this condition was found as 130 nm After that, nanoparticles were coated with a chitosan solution in 1:1 ratio to protect their stability and increase their usage potential of biotechnology. In order to investigate the usage of biotechnological potential and increase the stability of nanoparticles, 1:1 ratio of chitosan solution was used as a capping agent. Cytotoxicity and genotoxicity studies, which are based on cell culture, have been conducted to characterize the coated nanoparticles. With these approaches, 50% inhibition was obtained in cellular activity and 10-13mm zone was found in antimicrobial activity tests. Nanoparticles produced had interestingly shown 99% antistatic properties considering FTIR analysis. This might be a promising result for possible future antimicrobial and antistatic studies. These generated nanoparticles with biogenic, antimicrobial, and antistatic properties will possibly be able to use in biomedical applications (drug release systems, biosensors, hyperthermia, visualization techniques, etc.), immune system studies, cancer treatment, and catalytic applications.
Nanoparticles, produced by biological synthesis methods, provide advantages such as biocompatibility, environmentally friendly, increasing bioactivity properties and create important usage areas. Microalgae are open to improvement and undiscovered biological systems that have just begun to encounter in the biological synthesis of nanoparticles, which are biocompatible, eco-friendly and offer an alternative and more biocompatible approach. In this thesis, the aim is to investigate biogenic nanoparticle synthesis from different microalgae species, namely Porphyridium cruentum, Schizochytrium sp., Galdieria sulphuraria, Phaeodactylum tricornutum that are having rich metabolite content and easily produced in laboratory conditions. For this purpose, a Photo-Biogenic Nanoparticle (PBNP) synthesis reactor has been designed in order to make the optimization under controllable conditions. This reactor has been designed in such a way that it can easily be adapted to chemical and biological processes and also be used as a photobioreactor. During the optimization of biological nanoparticle synthesis; metal concentrations, metal:supernatant and biomass ratios, pH, incubation time, and stirring rate variables were investigated. Experimental designs were carried out using Central Composite Design (CCD) of Response Surface Methodology (RSM) in Design Expert software. With the Phaeodactylum tricornutum supernatant, which gives optimum results in these studies, the optimization of nanoparticle synthesis was completed after a 1-hour incubation period at a pH of 7.5 at 300 rpm in the PBNP reactor system with a working volume of 150 mL. The average nanoparticle size synthesized in this condition was found as 130 nm After that, nanoparticles were coated with a chitosan solution in 1:1 ratio to protect their stability and increase their usage potential of biotechnology. In order to investigate the usage of biotechnological potential and increase the stability of nanoparticles, 1:1 ratio of chitosan solution was used as a capping agent. Cytotoxicity and genotoxicity studies, which are based on cell culture, have been conducted to characterize the coated nanoparticles. With these approaches, 50% inhibition was obtained in cellular activity and 10-13mm zone was found in antimicrobial activity tests. Nanoparticles produced had interestingly shown 99% antistatic properties considering FTIR analysis. This might be a promising result for possible future antimicrobial and antistatic studies. These generated nanoparticles with biogenic, antimicrobial, and antistatic properties will possibly be able to use in biomedical applications (drug release systems, biosensors, hyperthermia, visualization techniques, etc.), immune system studies, cancer treatment, and catalytic applications.
Açıklama
Anahtar Kelimeler
Mikroalg, Biyo-Nanopartikül, Biyojenik, Optimizasyon, Antimikrobiyal Etki, Sitotoksisite, Reaktör Tasarımı, Microalgae, Bio Nanoparticles, Biogenic, Optimization, Antimicrobial Effect, Cytotoxicity, Reactor Design