Building 3D anatomical model of coiling of the internal carotid artery derived from CT angiographic data

Küçük Resim Yok

Tarih

2017

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Springer

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

The purpose of this study is to recreate live patient arterial anomalies using new recent application of three-dimensional (3D) printed anatomical models. Another purpose of building such models is to evaluate the effectiveness of angiographic data. With the help of the DICOM files from computed tomographic angiography (CT-A), we were able to build a printed model of variant course of the internal carotid artery (ICA). Images of coiling of the ICA taken by CT-A, were then converted into 3D images using Google SketchUp free software, and the images were saved in stereolithography format. Imaging helped us conduct the examination in details with reference to geometrical features of ICA, degree of curve, its extension, location and presence of loop. Challenging vascular anatomy was exposed with models of adverse curve of carotid anatomy, including highly angulated necks, conical necks, short necks, tortuous carotid arteries, and narrowed carotid lumens. It assisted us to comprehend spatial anatomy configuration of life-like models. 3D model can be very effective in cases when anatomical difficulties are detected through the CT-A, and therefore, a tactile approach is demanded preoperatively. 3D life-like models serve as an essential office-based tool in vascular surgery as they assist surgeons in preoperative planning, develop intraoperative guidance, teach both the patients and the surgical trainees, and simulate to show patient-specific procedures in medical field.

Açıklama

Anahtar Kelimeler

Internal carotid artery, Head and neck surgery, Endovascular surgery, Rapid prototyping, Anatomical model, Preoperative planning

Kaynak

European Archives of Oto-Rhino-Laryngology

WoS Q Değeri

Q2

Scopus Q Değeri

Q1

Cilt

274

Sayı

2

Künye