A novel functional conducting polymer as an immobilization platform
Küçük Resim Yok
Tarih
2014
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Elsevier Science Bv
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
Here, we present the fabrication of conducting polymer based enzymatic and microbial biosensors. To obtain immobilization platforms for both pyranose oxidase (PyOx) and Gluconobacter oxydans, the graphite electrode surface was modified with the polymer of 4-amino-N-(2,5-di(thiophen-2-yl)-1H-pyrrol-1-yl)benzamide (HKCN) which has free amino groups on the surface for further bioconjugation reactions with the biomolecules. Initially, the electrode surface was covered with HKCN via electropolymerization. Then, either PyOx or G. oxydans cell was stabilized using glutaraldehyde as a cross-linker. After optimization of biosensors, analytical characterization and surface imaging studies were investigated. The change of current depends on glucose concentration between 0.05-1.0 mM and 0.25-2.5 mM with HKCN/PyOx and HKCN/G. oxydans biosensors in batch systems. Also, the calibration graphs were obtained for glucose in FIA mode, and in this case, linear ranges were found to be 0.01-1.0 mM and 0.1-7.5 mM for HKCN/PyOx and HKCN/G. oxydans, respectively. (C) 2014 Elsevier B.V. All rights reserved.
Açıklama
Anahtar Kelimeler
Conducting polymers, Pyranose oxidase, G. oxydans, Biosensing
Kaynak
Materials Science & Engineering C-Materials For Biological Applications
WoS Q Değeri
N/A
Scopus Q Değeri
Q1
Cilt
40