A combinatorial approach to chicken meat spoilage detection using color-shifting silver nanoparticles, smartphone imaging, and artificial neural network (ANN)
dc.authorid | 0000-0001-8541-0540 | |
dc.contributor.author | Ghorbanizamani, Faezeh | |
dc.date.accessioned | 2025-02-20T12:13:28Z | |
dc.date.available | 2025-02-20T12:13:28Z | |
dc.date.issued | 2024 | |
dc.department | Ege Üniversitesi, Fen Fakültesi, Biyokimya Bölümü | |
dc.description.abstract | Ensuring food freshness is crucial for public health. Biogenic amines (like histamine) are reliable spoilage indicators in protein-rich foods such as meat. This study presents a label-free colorimetric sensor using green- colored silver nanoparticles (AgNPs) functionalized with carboxylated polyvinylpyrrolidone (PVP-COOH) for sensitive BA detection. After optimizing pH, time, and temperature, the modified AgNPs achieved a detection limit (LOD) of 0.21 mu g/mL and an analytical dynamic range of 10-100 mu g/mL for histamine. Smartphone imaging was employed to capture colorimetric changes, and the extracted data were used to train an artificial neural network (ANN), enhancing the LOD to 0.09 mu g/mL and extending the dynamic range to 0.5-200 mu g/mL. The sensor was validated with real food samples, successfully monitoring histamine levels in chicken meat over three days, detecting spoilage-related changes with high sensitivity. This integrative approach combining AgNPs, smartphone imaging, and AI offers a powerful tool for advanced food freshness monitoring. | |
dc.identifier.citation | Ghorbanizamani, F. (2025). A combinatorial approach to chicken meat spoilage detection using color-shifting silver nanoparticles, smartphone imaging, and artificial neural network (ANN). Food Chemistry, 468, 142390. | |
dc.identifier.doi | 0.1016/j.foodchem.2024.142390 | |
dc.identifier.endpage | 15 | |
dc.identifier.issn | 0308-8146 | |
dc.identifier.issue | Dec | |
dc.identifier.pmid | 39667235 | |
dc.identifier.scopus | 2-s2.0-85211326151 | |
dc.identifier.scopusquality | Q1 | |
dc.identifier.startpage | 1 | |
dc.identifier.uri | https://doi.org/10.1016/j.foodchem.2024.142390 | |
dc.identifier.uri | https://hdl.handle.net/11454/116101 | |
dc.identifier.volume | 468 | |
dc.identifier.wos | WOS:001386602000001 | |
dc.identifier.wosquality | Q1 | |
dc.indekslendigikaynak | Web of Science | |
dc.indekslendigikaynak | Scopus | |
dc.indekslendigikaynak | PubMed | |
dc.institutionauthor | Ghorbanizamani, Faezeh | |
dc.institutionauthorid | 0000-0001-8541-0540 | |
dc.language.iso | en | |
dc.publisher | Elsevier Sci Ltd | |
dc.relation.ispartof | Food Chemistry | |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | |
dc.rights | info:eu-repo/semantics/closedAccess | |
dc.subject | Artificial intelligence | |
dc.subject | Biogenic amines | |
dc.subject | Food freshness | |
dc.subject | Histamine | |
dc.subject | Meat | |
dc.subject | Point-of-need | |
dc.subject | Sensor | |
dc.title | A combinatorial approach to chicken meat spoilage detection using color-shifting silver nanoparticles, smartphone imaging, and artificial neural network (ANN) | |
dc.type | Article |
Dosyalar
Lisans paketi
1 - 1 / 1
Küçük Resim Yok
- İsim:
- license.txt
- Boyut:
- 1.17 KB
- Biçim:
- Item-specific license agreed upon to submission
- Açıklama: