EEG based Major Depressive disorder and Bipolar disorder detection using Neural Networks:A review
Küçük Resim Yok
Tarih
2021
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Elsevier Ireland Ltd
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
Mental disorders represent critical public health challenges as they are leading contributors to the global burden of disease and intensely influence social and financial welfare of individuals. The present compre-hensive review concentrate on the two mental disorders: Major depressive Disorder (MDD) and Bipolar Disorder (BD) with noteworthy publications during the last ten years. There is a big need nowadays for phenotypic characterization of psychiatric disorders with biomarkers. Electroencephalography (EEG) sig-nals could offer a rich signature for MDD and BD and then they could improve understanding of patho-physiological mechanisms underling these mental disorders. In this review, we focus on the literature works adopting neural networks fed by EEG signals. Among those studies using EEG and neural networks, we have discussed a variety of EEG based protocols, biomarkers and public datasets for depression and bipolar disorder detection. We conclude with a discussion and valuable recommendations that will help to improve the reliability of developed models and for more accurate and more deterministic computa-tional intelligence based systems in psychiatry. This review will prove to be a structured and valuable initial point for the researchers working on depression and bipolar disorders recognition by using EEG signals. (c) 2021 Elsevier B.V. All rights reserved. Mental disorders represent critical public health challenges as they are leading contributors to the global burden of disease and intensely influence social and financial welfare of individuals. The present comprehensive review concentrate on the two mental disorders: Major depressive Disorder (MDD) and Bipolar Disorder (BD) with noteworthy publications during the last ten years. There is a big need nowadays for phenotypic characterization of psychiatric disorders with biomarkers. Electroencephalography (EEG) signals could offer a rich signature for MDD and BD and then they could improve understanding of pathophysiological mechanisms underling these mental disorders. In this review, we focus on the literature works adopting neural networks fed by EEG signals. Among those studies using EEG and neural networks, we have discussed a variety of EEG based protocols, biomarkers and public datasets for depression and bipolar disorder detection. We conclude with a discussion and valuable recommendations that will help to improve the reliability of developed models and for more accurate and more deterministic computational intelligence based systems in psychiatry. This review will prove to be a structured and valuable initial point for the researchers working on depression and bipolar disorders recognition by using EEG signals.
Açıklama
Anahtar Kelimeler
Electroencephalogram(EEG), Major Depressive disorder(MDD), Bipolar disorder(BD), Artificial neural networks, biomedical informatics, Classification
Kaynak
Computer Methods and Programs in Biomedicine
WoS Q Değeri
Q1
Scopus Q Değeri
Cilt
202