Damla sulama sistemlerinde kullanılan filtreler üzerinde bir araştırma
Küçük Resim Yok
Tarih
1992
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Ege Üniversitesi
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
81 ÖZET Damla sulama sistemi suyu kök bölgesine vermesi ve daha tasarruflu bir su kullanımı sağlaması yönüyle diğer sulama sistemlerine göre bir üstünlük sağlamaktadır. Özellikle son yi 1larda damla sulama sisteminin verime olan etkisinin anlaşılmasıyla, sistem hızla yaygınlaş arak özellikle Ege ve Akdeniz bölgelerinde daha geniş kullanım alanı bulmuştur. Ancak bu sulama sisteminin kurulacağı su kaynağının oldukça temiz olması gerekir. Eğer su belirli oranda kirlilik içeriyorsa bu kirliliği giderecek nitelikte filtreler kullanılması gerekmektedir. Bazı filtrelerin maliyetlerinin oldukça yüksek olması nedeniyle ülkemizde damla sulama sistemleri, suyun genellikle temiz yeraltı su kaynaklarından temin edildiği yerlere kurulmaktadır. Damla sulama sisteminin kurulduğu su çok temiz ise kontrol ünitesine bir elek/disk (lamel) filtre yerleştirilmekte, eğer kullanılacak su kum içeriyorsa önce bir hidrosiklon ve ardından elek/disk (lamel) filtre seri olarak yer alacak şekilde bağlanmaktadır. Yosun, kil ve alüvyon gibi maddeleri süzme özelliği olan kum çakıl filtresinin ülkemizdeki üretimi çok azdır. İthal yoluyla girenlerin de maliyetleri çok yüksek olduğu için ülkemizde geniş kullanım alanı bulamamıştır. Bu araştırma, ülkemizde uygulanmakta olan damla sulama sistemlerinde geniş kullanım alanı bulan yerli (I, II, IV) ve yabancı yapım (III) filtrelerin değişik oranda çökelti içeriğine sahip iki çeşit suda (A ve B suyu) yük kaybı (kPa)-geçen su miktarı (L) ilişkisini, temiz suda (C suyu) yük kaybı (kPa)-debi (L/dak) ilişkisini belirlemek amacıyla yapılmıştır. Bu amaçla üçü yerli (I, II, IV) biri de yabancı yapım (III) olmak82 üzere dört filtre (Şekil 5,6,7 ve 8) denemeye alınmış ve üç değişik suyla denenmiştir (Çizelge 2). Bu sulardan ikisi değişik oranda (250 gr/m3, 416.66 gr/m3 ) çökelti içeren A ve B suyu, üçüncüsü de temiz su (C suyu) 'dur. Denemeler, Ege Üniversitesi Ziraat Fakültesi Tarım Makinaları Bölümü Pompa Deneme Laboratuvarında amaca uygun olarak hazırlanan deneme düzeni yardımıyla yürütülmüştür (Şekil 10). Denemeler, önce değişik oranlarda çökelti içeriğine sahip A ve B suyunda zamana bağlı olarak geçen su miktarı litre olarak (L) ve yük kaybının basınç farkı olarak (kPa) ölçülmesi şeklinde yapılmıştır. Bu ölçümler tamamlandıktan sonra temiz suyun (C suyu) filtreden geçişi esnasında oluşan yük kaybı (kPa)-debi (L/dak) olarak ölçülmüştür. Araştırma sonuçlarına göre değişik çökeltiye sahip A, B ve temiz su (C suyu) ile yapılan filtre denemelerinde aşağıdaki değerler elde edilmiştir. A ve B suları ile yapılan ölçmelerde 4000 litre kadar su filtreden geçirilmiştir. A suyunda 4000 litreye ulaşıldığında I nolu filtrede maksimum olarak 10.30 kPa'a, II nolu filtrede 25 kPa'a varan yük kaybı değerleri oluşmuştur. III nolu filtrede ise maksimum yük kaybı 2500 litrede 39 kPa'a, IV nolu filtrede maksimum yük kaybı 2000 litrede 29 kPa'a ulaşmıştır (Çizelge 12). IV nolu filtrede bu değer 500 litre sudan başlayarak hep aynı değerde kalmıştır. B suyu ile yapılan denemelerde I nolu filtreden 4000 litre su geçirildiğinde oluşan maksimum yük kaybı 10.35 kPa'dır. II nolu filtreden 1000 litre su geçirildiğinde oluşan maksimum yük kaybı 36.50 kPa, III nolu filtreden 3000 litre su geçirildiğinde oluşan maksimum yük kaybı 55 kPa'dır. IV nolu hidro3iklon filtrede ise 3500 litre83 suya ulaşıncaya kadar 500 litreden itibaren yük kaybı değeri hep 30 kPa olmuştur. Temiz C suyu ile yapılan ölçümlerde 20 L/dak ile 250 L/dak' arasında on değişik kademede geçirilen suyun filtrelerde oluşturduğu yük kaybı değerleri ise şu şekildedir (Çizelge 11, 13). Yük kaybı değeri I nolu filtrede 0.9 ile 4.9 kPa, II nolu filtrede 1.66 ile 13 kPa, III nolu filtrede 0.90 ile 7 kPa, IV nolu filtrede 1.66 ile 22 kPa arasında bulunmuştur. Sonuç olarak söylemek gerekirse, temiz su kaynağı kullanılan damla sulama sistemlerine en uygun filtre I ve III nolu filtredir denilebilir
84 SUMMARY Trickle irrigation system provides to give the water to the root of the plant and this system is better than the other system. Because using of the water is so economicly in this system especially at the last years the effective of the trickle irrigation system to the yield is understood then this system is used in the vast region especially in the Ege region and Mediterranean region. Note that the source of the water of this system must be so clean. If the water which is used in this system is not clean the proper filters must be used to obtain the clean water. The price of some filters are so much. Therefore generali this system is constructed at the under ground source of clean water, in our country if the water which is used in this system is so clean than one screen/disk (lamel) filter is placed to the control unit. If the using water is consist of the sand firstly one hydrosiclon filtre after then screen/disk filter are placed seriesly. The production of the filter to filtrate of the some materials such as algea, clay, silt ect. is so less in our country. The cost of the import filters is so much therefore these filters are not used so much in our country. This research was made with the aims of finding out the relation between the head loss CkPa) and the passed water amount (L) in two kinds of water (the water A and B) with different suspended matter and also the relation between the head loss (kPa) and the flow rate (L/min) in clean water (the water C) of the native (I, II, IV) and foreign (III) filtres used extensively in the trickle irrigation systems applied in our85 country. For this purpose, the four filters (figure 5,6,7 and 8), three of them were home made (I, II, IV) and one of them was foreign (III), were tried with three types of water (Table 2). The two of these three types of water were the water A and B which included suspended matter at different rates (250 gr/m3, 416.66 gr/m3) and the other one was clean water (the water C). The trials were made with the test environment appropriate for the purpose in the pomp test laboratory in Ege University Faculty of Agriculture, Department of Agriculture Machines. The tests were firstly made with measuring the passed water depending on the time as liter (L) and the head loss as pressure difference (kPa) in the water A and B which included the different amounts of suspended matter. After these measurings, the head loss (kPa) and the flow rate (L/min), while the clean water (the water C) was passing from the filter, was measured. According to the results of the research, the following conclusions were gained in the filtre tests made with the water A and B which included different suspended matter and the clean water (the water C). About 4000 liters of water were passed from the filter in the measurements with the water A and B. About the water A, when we reached to the 4000 liters, we measured the head loss as 10.30 kPa at maximum in the filter of no I, and 25 kPa in the filter of no II. The max. head loss reached to 39 kPa at 2500 liters in the filter of no III, and 29 kPa at 2000 liters in the filter of no IV (Table 12). This value stayed at the same level after the 500 liters of water in the filter of no IV.86 In the tests made with the water BF when 4000 liters of water passed from the filter of no I, the maximum head loss occured as 10.35 kPa. When 1000 liters of water passed from the filter of no II, the maximum head loss occured wa3 36.50 kPa. When 3000 liters of water passed from the filter of no III, the max. head loss occured was 55 kPa. In the hydrocyclone filter of no IV, after 500 liters of water, the head loss was 30 kPa and it stayed at that level up to 3500 liters of water. In the tests made with the clean water C which was passed at ten different steps between 20 L/min and 250 L/min, the water created the following head loss values in the filters (Table 11 and 13). 0.9-4.9 kPa in the filter of no I, 1.66-13 kPa in the filter of no II, 0.9-7 kPa in the filter of no III, 1.66-22 kPa in the filter of no IV. In conclusion, for the trickle irrigation systems which the clean water resourches are used on, (we can say that) the most appropriate filters are the filters of no I and no III.
84 SUMMARY Trickle irrigation system provides to give the water to the root of the plant and this system is better than the other system. Because using of the water is so economicly in this system especially at the last years the effective of the trickle irrigation system to the yield is understood then this system is used in the vast region especially in the Ege region and Mediterranean region. Note that the source of the water of this system must be so clean. If the water which is used in this system is not clean the proper filters must be used to obtain the clean water. The price of some filters are so much. Therefore generali this system is constructed at the under ground source of clean water, in our country if the water which is used in this system is so clean than one screen/disk (lamel) filter is placed to the control unit. If the using water is consist of the sand firstly one hydrosiclon filtre after then screen/disk filter are placed seriesly. The production of the filter to filtrate of the some materials such as algea, clay, silt ect. is so less in our country. The cost of the import filters is so much therefore these filters are not used so much in our country. This research was made with the aims of finding out the relation between the head loss CkPa) and the passed water amount (L) in two kinds of water (the water A and B) with different suspended matter and also the relation between the head loss (kPa) and the flow rate (L/min) in clean water (the water C) of the native (I, II, IV) and foreign (III) filtres used extensively in the trickle irrigation systems applied in our85 country. For this purpose, the four filters (figure 5,6,7 and 8), three of them were home made (I, II, IV) and one of them was foreign (III), were tried with three types of water (Table 2). The two of these three types of water were the water A and B which included suspended matter at different rates (250 gr/m3, 416.66 gr/m3) and the other one was clean water (the water C). The trials were made with the test environment appropriate for the purpose in the pomp test laboratory in Ege University Faculty of Agriculture, Department of Agriculture Machines. The tests were firstly made with measuring the passed water depending on the time as liter (L) and the head loss as pressure difference (kPa) in the water A and B which included the different amounts of suspended matter. After these measurings, the head loss (kPa) and the flow rate (L/min), while the clean water (the water C) was passing from the filter, was measured. According to the results of the research, the following conclusions were gained in the filtre tests made with the water A and B which included different suspended matter and the clean water (the water C). About 4000 liters of water were passed from the filter in the measurements with the water A and B. About the water A, when we reached to the 4000 liters, we measured the head loss as 10.30 kPa at maximum in the filter of no I, and 25 kPa in the filter of no II. The max. head loss reached to 39 kPa at 2500 liters in the filter of no III, and 29 kPa at 2000 liters in the filter of no IV (Table 12). This value stayed at the same level after the 500 liters of water in the filter of no IV.86 In the tests made with the water BF when 4000 liters of water passed from the filter of no I, the maximum head loss occured as 10.35 kPa. When 1000 liters of water passed from the filter of no II, the maximum head loss occured wa3 36.50 kPa. When 3000 liters of water passed from the filter of no III, the max. head loss occured was 55 kPa. In the hydrocyclone filter of no IV, after 500 liters of water, the head loss was 30 kPa and it stayed at that level up to 3500 liters of water. In the tests made with the clean water C which was passed at ten different steps between 20 L/min and 250 L/min, the water created the following head loss values in the filters (Table 11 and 13). 0.9-4.9 kPa in the filter of no I, 1.66-13 kPa in the filter of no II, 0.9-7 kPa in the filter of no III, 1.66-22 kPa in the filter of no IV. In conclusion, for the trickle irrigation systems which the clean water resourches are used on, (we can say that) the most appropriate filters are the filters of no I and no III.
Açıklama
Bu tezin, veri tabanı üzerinden yayınlanma izni bulunmamaktadır. Yayınlanma izni olmayan tezlerin basılı kopyalarına Üniversite kütüphaneniz aracılığıyla (TÜBESS üzerinden) erişebilirsiniz.
Anahtar Kelimeler
Ziraat, Agriculture, Damla sulama sistemi, Drip irrigation system, Filtreler, Filters, Tarım makineleri, Agricultural machinery