Asellüler matriks kaplı nanofibröz yapı iskelelerinin mezenkimal kök hücrelerin sinir hücrelerine farklılaşmasına etkisi
Küçük Resim Yok
Tarih
2022
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Ege Üniversitesi
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
Merkezi sinir sisteminde (MSS) meydana gelen hasarlar tedavi imkanlarının sınırlı olması nedeniyle hem birey hem de toplum açısından önemli bir sorundur. Travmatik omurilik hasarı (OİH) genellikle trafik kazaları, düşmeler ve ateşli silah yaralanmaları sonucu ortaya çıkar. Tedavisine yönelik cerrahi ve farmakolojik yöntemler denense de henüz etkin bir tedavisi yoktur. Son yıllarda hücreler, biyomalzemeler ve hücresizleştirilmiş matriksleri içeren kombine yaklaşımlar gündeme gelmiştir. OİH'nın patofizyolojisi incelendiğinde hasar bölgesinin ekstrasellüler matriksinde (ESM) büyük değişimler meydana geldiği ve hücreler için inhibitör bir çevre oluştuğu bilinmektedir. Bu nedenle hasar bölgesinin ESM'inde değişiklik yapabilecek bir doku iskelesi kullanılması gerektiği düşünülmüştür. Bu tez çalışmasında nöroindüktif asellüler matriks kaplı nanofibröz doku iskelelerinin üretimi amaçlanmıştır. Üç farklı yüzey morfolojisinde polikaprolakton (PCL) doku iskeleleri (membran, dağınık eğirilmiş, paralel eğirilmiş) üretilmiştir. Bu iskeleler sıçan MSS'den elde edilen asellüler matriks ile kaplanmıştır. Fiber çapları ve oryantasyonu SEM analizi ile incelenmiştir. Kaplamanın başarısı SEM-EDS analizi ile, çapraz bağlamanın başarısı ise FTIR analizi ile değerlendirilmiştir. Elde edilen iskeleler üzerine sıçan kemik iliği mezenkimal kök hücreleri (Kİ-MKH) ekilerek nöral farklılaştırma çalışması yapılmıştır. Sitotoksisite MTT analizi ile, nöronal farklılaşma ?III tubulin ve glial farklılaşma GFAP immunohistokimyasal boyamaları ile gösterilmiştir. SEM analizi verileri ile fiber çapı ölçümü yapılmış ve dağınık fiberlerin 300-600 nm, paralel fiberlerin 200-600 nm çapta oldukları bulunmuştur. Paralel fiberlerin %70'inden fazlası 0±10° açıyla dizilmiştir. Hücresizleştirme sonrası yapılan karakterizasyon testlerinde hücre ve kalıntılarının uzaklaştırıldığı, toplam protein miktarınınn beyinde ve omurilikte sırasıyla %13 ve %24'ünün korunduğu gösterilmiştir. Fibronektinin (FN) beyinde ve omurilikte %19'unun korunduğu, beyin türevli nörotrofik faktörün (BDNF) ise beyinde ve omurilikte sırasıyla %29 ve %18,5'unun korunduğu bulunmuştur. SEM-EDS analizi verileri kaplamanın başarılı olduğunu göstermiştir. FTIR analizi asellüler matriksin genipin ile çapraz bağlanmasının başarılı olduğunu göstermiştir. Biyobozunurluk testi elde edilen iskelelerin >2 ay bozunurluğa sahip olduğunu göstermiştir. Yapılan sitotoksisite çalışmasında asellüler matriks Kİ-MKH ile biyouyumlu bulunmuştur. Yapılan 3 günlük MTT analizinde hücre canlılığı en yüksek hESM (hücresizleştirilmiş ESM) kaplı dağınık fiberlerde bulunmuştur. Fiber iskelelerde hESM varlığı hücrelerin tutunması ve çoğalmasını kolaylaştırmıştır ancak membran iskelelerde etkisi olmamıştır. Yapılan nöral farklılaşma çalışmasında PCL paralel fiberler üzerinde hiçbir nöral farklılaşma ajanı içermeyen kontrol grubunda dahi ?III tubulin ifadesi olmuştur. PCL fiber iskelelerde nöronal soya farklılaşma eğilimi gösterirken hESM kaplı iskelelerde glial yönde farklılaşma olmuştur. Elde edilen veriler nöroindüktif bir doku iskelesi geliştirildiğini göstermiştir. Asellüler matriks kaplaması Kİ-MKH'lerinin tutunması ve farklılaşmasını desteklemiştir. Elde edilen doku iskelesi nöral doku mühendisliği çalışmalarında kullanılabilir
Damage to the central nervous system (CNS) is an important problem for both the individual and the society due to the limited treatment possibilities. Traumatic spinal cord injury (SCI) usually occurs due to traffic accidents, falls, and gunshot wounds. Although surgical and pharmacological methods have been tried, there is no effective treatment yet. In recent years, combinatorial approaches including cells, biomaterials and decellularized matrices have come to the fore. When the pathophysiology of SCI is examined, it is known that big changes occur in the extracellular matrix (ECM) of the injury site and an inhibitory environment for cells is formed. For this reason, it was thought that a tissue scaffold that could change the ECM of the damaged area should be used. In this thesis, we aimed to produce neuroinductive nanofibrous tissue scaffolds coated with acellular matrix. Polycaprolactone (PCL) scaffolds (membrane, random, align) in three different surface morphologies were produced. They were coated with acellular matrix obtained from rat CNS. Fiber diameters and orientation were investigated by SEM analysis. The success of the coating was evaluated by SEM-EDS analysis, and the success of cross-linking by FTIR analysis. Neural differentiation study was carried out by seeding rat bone marrow mesenchymal stem cells (BMSCs) on the scaffolds obtained. Cytotoxicity was demonstrated by MTT analysis, neural differentiation by ?III tubulin and GFAP immunohistochemical staining. Fiber diameter measurements were made with SEM analysis data and dispersed fibers were found as 300-600 nm and parallel fibers 200-600 nm in diameter. More than 70% of the parallel fibers were arranged at an angle of 0±10°. In the characterization tests performed after decellularization, it was shown that the cells and their remnants were removed, the total protein amount was preserved in the brain and spinal cord, 13% and 24% respectively. It was found that 19% of fibronectin (FN) was preserved in the brain and spinal cord, brain-derived neurotrophic factor (BDNF) were preserved in the brain and spinal cord, 29% and 18.5% respectively. SEM-EDS analysis data showed that the coating was successful. FTIR analysis showed successful cross-linking of hESM with genipin. The biodegradability test showed that the scaffolds obtained were degradable for >2 months. In the cytotoxicity study, the acellular matrix was found to be biocompatible with BMSCs. When PCL scaffolds were compared with each other in 3-day MTT analysis, the highest cell viability was found on dECM (decellularized ECM)-coated random fibers. The presence of hESM in fiber scaffolds facilitated cell attachment and proliferation, but had no effect on membrane scaffolds. In the neural differentiation study, ?III tubulin expression was observed even in the control group, which did not contain any neural differentiation agent on PCL parallel fibers. Cells tended to differentiate into neuronal lineage on PCL fiber scaffolds, whereas there was glial differentiation on hESM-coated scaffolds. The obtained data showed that a neuroinductive scaffold has been developed. Acellular matrix coating promoted attachment and differentiation of BMSCs. The obtained tissue scaffold can be used in neural tissue engineering studies.
Damage to the central nervous system (CNS) is an important problem for both the individual and the society due to the limited treatment possibilities. Traumatic spinal cord injury (SCI) usually occurs due to traffic accidents, falls, and gunshot wounds. Although surgical and pharmacological methods have been tried, there is no effective treatment yet. In recent years, combinatorial approaches including cells, biomaterials and decellularized matrices have come to the fore. When the pathophysiology of SCI is examined, it is known that big changes occur in the extracellular matrix (ECM) of the injury site and an inhibitory environment for cells is formed. For this reason, it was thought that a tissue scaffold that could change the ECM of the damaged area should be used. In this thesis, we aimed to produce neuroinductive nanofibrous tissue scaffolds coated with acellular matrix. Polycaprolactone (PCL) scaffolds (membrane, random, align) in three different surface morphologies were produced. They were coated with acellular matrix obtained from rat CNS. Fiber diameters and orientation were investigated by SEM analysis. The success of the coating was evaluated by SEM-EDS analysis, and the success of cross-linking by FTIR analysis. Neural differentiation study was carried out by seeding rat bone marrow mesenchymal stem cells (BMSCs) on the scaffolds obtained. Cytotoxicity was demonstrated by MTT analysis, neural differentiation by ?III tubulin and GFAP immunohistochemical staining. Fiber diameter measurements were made with SEM analysis data and dispersed fibers were found as 300-600 nm and parallel fibers 200-600 nm in diameter. More than 70% of the parallel fibers were arranged at an angle of 0±10°. In the characterization tests performed after decellularization, it was shown that the cells and their remnants were removed, the total protein amount was preserved in the brain and spinal cord, 13% and 24% respectively. It was found that 19% of fibronectin (FN) was preserved in the brain and spinal cord, brain-derived neurotrophic factor (BDNF) were preserved in the brain and spinal cord, 29% and 18.5% respectively. SEM-EDS analysis data showed that the coating was successful. FTIR analysis showed successful cross-linking of hESM with genipin. The biodegradability test showed that the scaffolds obtained were degradable for >2 months. In the cytotoxicity study, the acellular matrix was found to be biocompatible with BMSCs. When PCL scaffolds were compared with each other in 3-day MTT analysis, the highest cell viability was found on dECM (decellularized ECM)-coated random fibers. The presence of hESM in fiber scaffolds facilitated cell attachment and proliferation, but had no effect on membrane scaffolds. In the neural differentiation study, ?III tubulin expression was observed even in the control group, which did not contain any neural differentiation agent on PCL parallel fibers. Cells tended to differentiate into neuronal lineage on PCL fiber scaffolds, whereas there was glial differentiation on hESM-coated scaffolds. The obtained data showed that a neuroinductive scaffold has been developed. Acellular matrix coating promoted attachment and differentiation of BMSCs. The obtained tissue scaffold can be used in neural tissue engineering studies.
Açıklama
27.03.2023 tarihine kadar kullanımı yazar tarafından kısıtlanmıştır
Anahtar Kelimeler
Biyomühendislik, Bioengineering, Biyoteknoloji, Biotechnology, Biyomalzemeler, Biomaterials, Doku mühendisliği, Tissue engineering