Electrochemical sensors and biosensors using laser-derived graphene: A comprehensive review

dc.contributor.authorLahcen, Abdellatif Ait
dc.contributor.authorRauf, Sakandar
dc.contributor.authorBeduk, Tutku
dc.contributor.authorDurmus, Ceren
dc.contributor.authorAljedaibi, Abdulrahman
dc.contributor.authorTimur, Suna
dc.contributor.authorSalama, Khaled N.
dc.date.accessioned2020-12-01T11:57:41Z
dc.date.available2020-12-01T11:57:41Z
dc.date.issued2020
dc.departmentEge Üniversitesien_US
dc.description.abstractLaser-derived graphene (LDG) technology is gaining attention as a promising material for the development of novel electrochemical sensors and biosensors. Compared to established methods for graphene synthesis, LDG provides many advantages such as cost-effectiveness, fast electron mobility, mask-free, green synthesis, good electrical conductivity, porosity, mechanical stability, and large surface area. This review discusses, in a critical way, recent advancements in this field. First, we focused on the fabrication and doping of LDG platforms using different strategies. Next, the techniques for the modification of LDG sensors using nanomaterials, conducting polymers, biological and artificial receptors are presented. We then discussed the advances achieved for various LDG sensing and biosensing schemes and their applications in the fields of environmental monitoring, food safety, and clinical diagnosis. Finally, the drawbacks and limitations of LDG based electrochemical biosensors are addressed, and future trends are also highlighted.en_US
dc.description.sponsorshipKing Abdullah University of Science and Technology (KAUST), Saudi ArabiaKing Abdullah University of Science & Technology; KAUST Sensor Initiative; KAUST Visiting Student Programen_US
dc.description.sponsorshipThe authors would like to express their acknowledgments to the financial support of funding from King Abdullah University of Science and Technology (KAUST), Saudi Arabia. Also, we thank the KAUST Sensor Initiative and KAUST Visiting Student Program for supporting this work. in addition, we would like to thank Dr. Veerappan Mani, and Dr. Sandeep G. Surya for their suggestions and comments.en_US
dc.identifier.doi10.1016/j.bios.2020.112565en_US
dc.identifier.issn0956-5663
dc.identifier.issn1873-4235
dc.identifier.pmid32927277en_US
dc.identifier.scopus2-s2.0-85090743698en_US
dc.identifier.scopusqualityQ1en_US
dc.identifier.urihttps://doi.org/10.1016/j.bios.2020.112565
dc.identifier.urihttps://hdl.handle.net/11454/61769
dc.identifier.volume168en_US
dc.identifier.wosWOS:000574928300004en_US
dc.identifier.wosqualityQ1en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.indekslendigikaynakPubMeden_US
dc.language.isoenen_US
dc.publisherElsevier Advanced Technologyen_US
dc.relation.ispartofBiosensors & Bioelectronicsen_US
dc.relation.publicationcategoryMakale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectLaser-derived grapheneen_US
dc.subjectLaser-scribed grapheneen_US
dc.subjectModified electrodesen_US
dc.subjectElectrochemical sensors and biosensorsen_US
dc.subjectFlexible electrodesen_US
dc.subjectMolecularly imprinted polymersen_US
dc.titleElectrochemical sensors and biosensors using laser-derived graphene: A comprehensive reviewen_US
dc.typeReview Articleen_US

Dosyalar