Bir turbo jet motorunun ekserji, ileri ekserji, eksergoekonomik ve ileri eksergoekonomik analizleri
Yükleniyor...
Dosyalar
Tarih
2020
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Ege Üniversitesi, Fen Bilimleri Enstitüsü
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
Bu tez çalışması ile uçaklarda kullanılan bir gaz türbini turbo jet motorunun
performansı, enerji, ekserji, ileri ekserji, eksergoekonomik ve ileri
eksergoekonomik analiz yöntemleri ile deneysel olarak değerlendirilmiştir. Tez
çalışması kapsamında ilk olarak, turbo jet motoru her bir bileşeni için
önlenebilir/önlenemez ekserji yıkımları, iç kaynaklı/dış kaynaklı ekserji yıkımları
ve ekserji verimliliği hesaplanmıştır. Motorun ard yanmasız (Military-MIL)
çalışma modunda ekserji verimi % 30,85 olurken ard yanmalı (Afterburner-AB)
çalışma modunda ekserji verimi % 16,98 belirlenmiştir. Sistemin ekserji
iyileştirme potansiyeli (ExIP) dikkate alındığında ise MIL çalışma modunda
ekserji verimi % 59,12 elde edilirken AB çalışma modunda ekserji verimi ise %
54,64 hesaplanmıştır. İkinci aşamada ise sistemi oluşturan her bir bileşen için
ekserji maliyet akım değerleri tespit edilerek ilgili ekonomik bağıntılar
çözülmüştür. Ekserji yıkım maliyet akımı en fazla yanma odası (Combustion
Chamber-CC) ve ard yanma odası egzoz kanalı (Afterburner Exhaust Duct-
ABED) bileşenlerinde sırasıyla 338,49 $/h ve 1359,67 $/h değerleriyle tespit
edilmiştir. Ekserji yıkımı akımları büyük bir kısmının, önlenemez olduğu tespit
edilmiş olup turbo jet motorun MIL ve AB çalışma modları için sırasıyla 8458,81
kW ve 25051,59 kW olarak belirlenmiştir. Bununla birlikte sistem bileşenlerinin
çoğunda ekserji yıkımlarının iç kaynaklı ve bileşenlerin kendi çalışma
koşullarından kaynaklandığı belirlenmiş olup CC ve ABED bileşenlerinde
meydana gelen iç kaynaklı ekserji yıkımı akımları sırasıyla 6835,25 kW ve
16399,32 kW olarak tespit edilmiştir. Sonuç olarak, MIL çalışma modunun AB çalışma moduna göre hem maliyet
etkin hem de verimli olduğu gerçekleştirilen analizler ile tespit edilmiştir. Gaz
türbini üretim teknolojisinin son yıllarda malzeme ve üretim yöntemleri açısından
gelişmesiyle birlikte, 3 boyutlu baskı üretim yöntemi ile yekpare üretilecek olan
gaz türbin motorlarının ekserji yıkımları azaltılarak daha çevre dostu, verimli ve
maliyet etkin çalışabileceği düşünülmektedir.
With this doctoral dissertation, the performance of a gas turbine turbo jet engine used in military aircraft was evaluated experimentally with energy, exergy, advanced exergy, exergoeconomic and advanced exergoeconomic analyses. Within the scope of the thesis, firstly, avoidable/unavoidable exergy destruction, endogenous/exogenous exergy destruction and exergy efficiency were calculated for each equipment of the turbo jet engine. The exergy efficiency of the engine was 30.85% at the Military (MIL) operation mode, while the exergy efficiency was 16.98% at the Afterburner (AB) operation mode. Considering the exergy improvement potential (ExIP) of the system, the improved exergy efficiency was achieved 59.12% at MIL operating mode, while the improved exergy efficiency was calculated as 54.64% at AB operating mode. In the second stage, exergy flow cost values were determined for each component of the system by solving the related economic equations. Exergy destruction cost rates were determined the most in Combustion Chamber (CC) and Afterburner Exhaust Duct (ABED) components with values of 338.49 $/h and 1359.67 $/h, respectively. It was determined that the majority of exergy destruction rates were found to be unavoidable with the values of 8458.81 kW and 25051.59 kW for the MIL and AB operating modes, respectively. In addition, exergy destructions in most of the system components were determined to be internally sourced and due to the own working conditions of the components. The internally sourced exergy destruction rates in CC and ABED components were determined as 6835.25 kW and 16399.32 kW, respectively. As a result, it has been determined by the analyses that the MIL operating mode is both cost effective and efficient compared to the AB operating mode. With the development of gas turbine production technology in terms of materials and production methods in recent years, it is thought that gas turbine engines, which will be produced monolithically with 3D printing production method, can operate more environmental friendly, efficient and cost effective by mitigating exergy destructions.
With this doctoral dissertation, the performance of a gas turbine turbo jet engine used in military aircraft was evaluated experimentally with energy, exergy, advanced exergy, exergoeconomic and advanced exergoeconomic analyses. Within the scope of the thesis, firstly, avoidable/unavoidable exergy destruction, endogenous/exogenous exergy destruction and exergy efficiency were calculated for each equipment of the turbo jet engine. The exergy efficiency of the engine was 30.85% at the Military (MIL) operation mode, while the exergy efficiency was 16.98% at the Afterburner (AB) operation mode. Considering the exergy improvement potential (ExIP) of the system, the improved exergy efficiency was achieved 59.12% at MIL operating mode, while the improved exergy efficiency was calculated as 54.64% at AB operating mode. In the second stage, exergy flow cost values were determined for each component of the system by solving the related economic equations. Exergy destruction cost rates were determined the most in Combustion Chamber (CC) and Afterburner Exhaust Duct (ABED) components with values of 338.49 $/h and 1359.67 $/h, respectively. It was determined that the majority of exergy destruction rates were found to be unavoidable with the values of 8458.81 kW and 25051.59 kW for the MIL and AB operating modes, respectively. In addition, exergy destructions in most of the system components were determined to be internally sourced and due to the own working conditions of the components. The internally sourced exergy destruction rates in CC and ABED components were determined as 6835.25 kW and 16399.32 kW, respectively. As a result, it has been determined by the analyses that the MIL operating mode is both cost effective and efficient compared to the AB operating mode. With the development of gas turbine production technology in terms of materials and production methods in recent years, it is thought that gas turbine engines, which will be produced monolithically with 3D printing production method, can operate more environmental friendly, efficient and cost effective by mitigating exergy destructions.
Açıklama
Anahtar Kelimeler
Gaz Türbini, Turbo Jet, Ekserji Analizi, Eksergoekonomik Analiz, İleri Ekserji Analizi, İleri Eksergoekonomik Analizi, Gas Turbine, Exergy Analysis, Exergoeconomic Analysis, Advanced Exergy Analysis, Advanced Exergoeconomic Analysis