Electrochemical Polymerization of (2-Dodecyl-4, 7-di (thiophen-2-yl)-2H-benzo[d][1,2,3] triazole): A Novel Matrix for Biomolecule Immobilization

Küçük Resim Yok

Tarih

2010

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

A recently synthesized conducting polymer [poly(2-dodecyl-4,7-di(thiophen-2-yl)-2H-benzo[d][1,2,3]triazole (PTBT)] was tested as a platform for biomolecule immobilization. After electrochemical polymerization of the monomer (TBT) on graphite electrodes, immobilization of glucose oxidase (GOx, ß-D-glucose: oxygen-1-oxidoreductase, EC 1.1.3.4) was carried out. To improve the interactions between the enzyme and hydrophobic alkyl chain on the polymeric structure, GOx and isoleucine (Ile) amino acid were mixed in sodium phosphate buffer (pH 7.0) with a high ionic strength (250 × 10-3 M). The solution is then casted on the polymer film, and the amino groups in the protein structure were crosslinked using glutaraldehyde (GA) as the bifunctional agent. Finally, the surface was covered with a perm-selective membrane. Consequently, cross-linked enzyme crystal (CLEC) like assembles with regular shapes were observed after immobilization. Microscopic techniques such as scanning electron microscopy (SEM) and fluorescence microscopy were used to monitor the surface morphologies of both the polymer and the bioactive layer. Electrochemical responses of the enzyme electrodes were measured by monitoring O2 consumption in the presence of glucose at -0.7 V. The optimized biosensor showed a very good linearity between 0.05 and 2.5 × 10-3 M with a 52 s response time and a detection limit (LOD) of 0.029 × 10-3 M to glucose. Also, kinetic parameters, operational and storage stabilities were determined. Km and Imax values were found as 4.6 × 10-3 M and 2.49 µA, respectively. It was also shown that no activity was lost during operational and storage conditions. Finally, proposed system was applied for glucose biomonitoring during fermentation in yeast culture where HPLC was used as the reference method to verify the data obtained by the proposed biosensor. A newly synthesized conducting polymer [poly(2-dodecyl-4,7-di(thiophen-2-yl)-2H-benzo[d][1,2,3]triazole (PTBT)] as a matrix for biomolecule immobilization was reported here. Glucose oxidase (GOx) was used as the model enzyme to examine the possibility of its immobilization onto PTBT after electrochemical polymerization of TBT on the graphite surface. Microscopic techniques such as scanning electron microscopy (SEM) and fluorescence microscopy were used to monitor the surface morphologies of both the polymer and the bioactive layer. After optimization and characterization studies, designed biosensor was applied for glucose monitoring in yeast culture. © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Açıklama

Anahtar Kelimeler

CLEC (cross-linked enzyme crystal) structure, Conducting polymers, Electrochemical polymerization, Enzyme biosensors, Hydrophobic interactions

Kaynak

Macromolecular Bioscience

WoS Q Değeri

Scopus Q Değeri

Q1

Cilt

10

Sayı

12

Künye