FOURTH-ORDER M-POINT BOUNDARY VALUE PROBLEMS ON TIME SCALES

dc.contributor.authorKaraca, Ilkay Yaslan
dc.contributor.authorYilmaz, Ozlem
dc.date.accessioned2019-10-27T21:17:03Z
dc.date.available2019-10-27T21:17:03Z
dc.date.issued2010
dc.departmentEge Üniversitesien_US
dc.description.abstractLet T be a time scale with [a, b] subset of T. We establish criteria for existence of one or more than one positive solutions of the non-eigenvalue problem (0.1) {y Delta(4)(t) - q(t)y Delta(2) (sigma(t)) = f(t, y(t)) = f(t,y(t)), t is an element of [a, b] subset of T, y(a) = Sigma(m-2)(i=1) a(i)y(xi(i)), y(sigma(2)(b)) = Sigma(m-2)(i=1) b(i)y(xi(i)), y Delta(2)(a) = Sigma(m-2)(i=1) a(i)y Delta(2)(xi(i)), y Delta(2)(sigma(2)(b)) = Sigma(m-2)(i=1) b(i)y Delta(2)(xi(i)), where xi(i) is an element of (a, b), a(i), b(i) is an element of [0, infinity) (for i is an element of {1, 2, ... , m - 2}) are given constants. Later, we consider the existence and multiplicity of positive solutions for the eigenvalue problem y Delta(4) (t) - q(t)y Delta(2) (sigma(t)) = lambda f (t, y(t)) with the same boundary conditions. We shall also obtain criteria which lead to nonexistence of positive solutions. In both problems, we will use Krasnoselskii fixed point theorem.en_US
dc.identifier.endpage269en_US
dc.identifier.issn1056-2176
dc.identifier.issn1056-2176en_US
dc.identifier.issue2en_US
dc.identifier.startpage249en_US
dc.identifier.urihttps://hdl.handle.net/11454/43766
dc.identifier.volume19en_US
dc.identifier.wosWOS:000282916600004en_US
dc.identifier.wosqualityQ4en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.language.isoenen_US
dc.publisherDynamic Publishers, Incen_US
dc.relation.ispartofDynamic Systems and Applicationsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.titleFOURTH-ORDER M-POINT BOUNDARY VALUE PROBLEMS ON TIME SCALESen_US
dc.typeArticleen_US

Dosyalar