FOURTH-ORDER M-POINT BOUNDARY VALUE PROBLEMS ON TIME SCALES
Küçük Resim Yok
Tarih
2010
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Dynamic Publishers, Inc
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
Let T be a time scale with [a, b] subset of T. We establish criteria for existence of one or more than one positive solutions of the non-eigenvalue problem (0.1) {y Delta(4)(t) - q(t)y Delta(2) (sigma(t)) = f(t, y(t)) = f(t,y(t)), t is an element of [a, b] subset of T, y(a) = Sigma(m-2)(i=1) a(i)y(xi(i)), y(sigma(2)(b)) = Sigma(m-2)(i=1) b(i)y(xi(i)), y Delta(2)(a) = Sigma(m-2)(i=1) a(i)y Delta(2)(xi(i)), y Delta(2)(sigma(2)(b)) = Sigma(m-2)(i=1) b(i)y Delta(2)(xi(i)), where xi(i) is an element of (a, b), a(i), b(i) is an element of [0, infinity) (for i is an element of {1, 2, ... , m - 2}) are given constants. Later, we consider the existence and multiplicity of positive solutions for the eigenvalue problem y Delta(4) (t) - q(t)y Delta(2) (sigma(t)) = lambda f (t, y(t)) with the same boundary conditions. We shall also obtain criteria which lead to nonexistence of positive solutions. In both problems, we will use Krasnoselskii fixed point theorem.
Açıklama
Anahtar Kelimeler
Kaynak
Dynamic Systems and Applications
WoS Q Değeri
Q4
Scopus Q Değeri
Cilt
19
Sayı
2