FOURTH-ORDER M-POINT BOUNDARY VALUE PROBLEMS ON TIME SCALES

Küçük Resim Yok

Tarih

2010

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Dynamic Publishers, Inc

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

Let T be a time scale with [a, b] subset of T. We establish criteria for existence of one or more than one positive solutions of the non-eigenvalue problem (0.1) {y Delta(4)(t) - q(t)y Delta(2) (sigma(t)) = f(t, y(t)) = f(t,y(t)), t is an element of [a, b] subset of T, y(a) = Sigma(m-2)(i=1) a(i)y(xi(i)), y(sigma(2)(b)) = Sigma(m-2)(i=1) b(i)y(xi(i)), y Delta(2)(a) = Sigma(m-2)(i=1) a(i)y Delta(2)(xi(i)), y Delta(2)(sigma(2)(b)) = Sigma(m-2)(i=1) b(i)y Delta(2)(xi(i)), where xi(i) is an element of (a, b), a(i), b(i) is an element of [0, infinity) (for i is an element of {1, 2, ... , m - 2}) are given constants. Later, we consider the existence and multiplicity of positive solutions for the eigenvalue problem y Delta(4) (t) - q(t)y Delta(2) (sigma(t)) = lambda f (t, y(t)) with the same boundary conditions. We shall also obtain criteria which lead to nonexistence of positive solutions. In both problems, we will use Krasnoselskii fixed point theorem.

Açıklama

Anahtar Kelimeler

Kaynak

Dynamic Systems and Applications

WoS Q Değeri

Q4

Scopus Q Değeri

Cilt

19

Sayı

2

Künye