New prediction methods for collaborative filtering

dc.contributor.authorBulut, Hasan
dc.contributor.authorMilli, Musa
dc.date.accessioned2019-10-27T22:58:43Z
dc.date.available2019-10-27T22:58:43Z
dc.date.issued2016
dc.departmentEge Üniversitesien_US
dc.description.abstractCompanies, in particular e-commerce companies, aims to increase customer satisfaction, hence in turn increase their profits, using recommender systems. Recommender Systems are widely used nowadays and they provide strategic advantages to the companies that use them. These systems consist of different stages. In the first stage, the similarities between the active user and other users are computed using the user-product ratings matrix. Then, the neighbors of the active user are found from these similarities. In prediction calculation stage, the similarities computed at the first stage are used to generate the weight vector of the closer neighbors. Neighbors affect the prediction value by the corresponding value of the weight vector. In this study, we developed two new methods for the prediction calculation stage which is the last stage of collaborative filtering. The performance of these methods are measured with evaluation metrics used in the literature and compared with other studies in this field.en_US
dc.identifier.doi10.5505/pajes.2014.44227
dc.identifier.endpage128en_US
dc.identifier.issn1300-7009
dc.identifier.issn2147-5881
dc.identifier.issn1300-7009en_US
dc.identifier.issn2147-5881en_US
dc.identifier.issue2en_US
dc.identifier.startpage123en_US
dc.identifier.urihttps://doi.org/10.5505/pajes.2014.44227
dc.identifier.urihttps://hdl.handle.net/11454/51627
dc.identifier.volume22en_US
dc.identifier.wosWOS:000443161500007en_US
dc.identifier.wosqualityN/Aen_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.language.isotren_US
dc.publisherPamukkale Univen_US
dc.relation.ispartofPamukkale University Journal of Engineering Sciences-Pamukkale Universitesi Muhendislik Bilimleri Dergisien_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectRecommender systemen_US
dc.subjectCollaborative filteringen_US
dc.subjectPrediction methodsen_US
dc.titleNew prediction methods for collaborative filteringen_US
dc.typeArticleen_US

Dosyalar