Hydrothermal gasification of a biodiesel by-product crude glycerol in the presence of phosphate based catalysts

Küçük Resim Yok

Tarih

2015

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Pergamon-Elsevier Science Ltd

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

Energy from biomass can be provided in various ways, such as burning the solid wastes, production of biogas (by anaerobic digesters), biofuels (i.e. methanol, ethanol, biodiesel, and derivatives), and methane via the utilization of landfills. Biodiesel is a widely used biofuel produced by the conversion of first-generation biomass feedstock via bio-chemical conversion platforms. Crude glycerol is the by-product of biodiesel production being 10 wt.% of the produced biodiesel. The objective of this study is to utilize this glycerol fraction by converting it to fuel gas or to chemical feedstock. In this study, the concentration of glycerol feedstock solution and the catalyst concentration were 50 g/L and 5 g/L, respectively. Crude glycerol was gasified in a sub and supercritical water medium by using a batch autoclave with an inner volume of 100 ml. A temperature range from 300 to 600 degrees C was studied. Experiments were performed with pure and crude glycerol samples in the absence and the presence of homogeneous acidic and alkali catalysts, namely H3PO4, KH2PO4, K2HPO4, and K3PO4. These were used to obtain higher gasification efficiencies and hydrogen and/or methane yields. Subsequent to each experiment liquid, solid, and gaseous products were collected and analyzed by GC, TCA (total carbon analyzer), HPLC, and GC/MS. The order of the effectiveness of the catalysts on gasification was found as: K3PO4 > K2HPO4 > H3PO4 > KH2PO4 for crude glycerol and K3PO4 > K2HPO4 > KH2PO4 > H3PO4 for pure glycerol. K2HPO4 and K3PO4 were found to be more effective in terms of hydrogen production while H3PO4 and KH2PO4 showed the best performance for the maximized methane production. Copyright (C) 2015, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

Açıklama

Anahtar Kelimeler

By-product glycerol, Hydrogen, Methane, Supercritical water gasification

Kaynak

International Journal of Hydrogen Energy

WoS Q Değeri

Q2

Scopus Q Değeri

N/A

Cilt

40

Sayı

43

Künye