Microbial biopolymers in articular cartilage tissue engineering

dc.authoridBingul, Nur Deniz/0000-0002-8800-4924
dc.authoridSendemir, Aylin/0000-0003-1818-6651
dc.authoridOZ, Yunus Emre/0000-0002-6418-5257
dc.authorscopusid57803467000
dc.authorscopusid57803467100
dc.authorscopusid8394019800
dc.authorscopusid56641551700
dc.authorwosidSendemir, Aylin/A-6347-2014
dc.contributor.authorBingul, Nur Deniz
dc.contributor.authorOz, Yunus Emre
dc.contributor.authorSendemir, Aylin
dc.contributor.authorHames, Elif Esin
dc.date.accessioned2023-01-12T19:50:41Z
dc.date.available2023-01-12T19:50:41Z
dc.date.issued2022
dc.departmentN/A/Departmenten_US
dc.description.abstractArticular cartilage tissue engineering offers promising alternative approaches using scaffolds, cells, and growth factors to current treatments to repair cartilage damage. Considering the existing treatment options for damaged cartilage that do not provide a permanent solution, it is important to mimic the extracellular matrix in the scaffolds to be developed and to provide an ideal microenvironment for chondrocytes. The scaffolds to be used for this purpose should be biocompatible, non-toxic, highly porous, and biodegradable and possess the desired mechanical properties. Microbial biopolymers have shown promising results in cartilage tissue engineering. These biopolymers can be classified as polysaccharides (bacterial cellulose, hyaluronic acid, alginate, dextran, pullulan, gellan gum, and xanthan gum), polyesters (polyhydroxyalkanoates), and polyamides (poly-gamma-glutamic acid and epsilon-poly-L-lysine). Although the functions of biopolymers as tissue scaffolds differ according to their properties, they are often used as a main support material; and their adjustable functionality by various modifications increases their pertinence. This review focuses on the use, modifications, and functionalization of microbial biopolymers in targeted scaffold designs for cartilage repair in articular cartilage tissue engineering.en_US
dc.description.sponsorshipScientific Research Foundation of Ege University [FOA-2020-21947]en_US
dc.description.sponsorshipThis work was partially supported by The Scientific Research Foundation of Ege University (Grant number FOA-2020-21947).en_US
dc.identifier.doi10.1007/s10965-022-03178-0
dc.identifier.issn1022-9760
dc.identifier.issn1572-8935
dc.identifier.issn1022-9760en_US
dc.identifier.issn1572-8935en_US
dc.identifier.issue8en_US
dc.identifier.scopus2-s2.0-85134242908en_US
dc.identifier.scopusqualityQ2en_US
dc.identifier.urihttps://doi.org/10.1007/s10965-022-03178-0
dc.identifier.urihttps://hdl.handle.net/11454/76151
dc.identifier.volume29en_US
dc.identifier.wosWOS:000826162400002en_US
dc.identifier.wosqualityQ3en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.ispartofJournal Of Polymer Researchen_US
dc.relation.publicationcategoryDiğeren_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectMicrobial polymersen_US
dc.subjectScaffolden_US
dc.subjectArticular cartilageen_US
dc.subjectTissue engineeringen_US
dc.subjectSilk Fibroin/Hyaluronic Aciden_US
dc.subjectPorous Bacterial Celluloseen_US
dc.subjectMesenchymal Stem-Cellsen_US
dc.subjectHyaluronic-Aciden_US
dc.subjectXanthan Gumen_US
dc.subjectMechanical-Propertiesen_US
dc.subjectExtracellular-Matrixen_US
dc.subjectSurface Modificationen_US
dc.subjectMedical Applicationsen_US
dc.subjectComposite Scaffoldsen_US
dc.titleMicrobial biopolymers in articular cartilage tissue engineeringen_US
dc.typeReviewen_US

Dosyalar