Oxidation Behavior of C- and Au-Ion-Implanted Biodegradable Polymers

Küçük Resim Yok

Tarih

2012

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Ieee-Inst Electrical Electronics Engineers Inc

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

Biodegradable polymers are widely used in biomedical and tissue engineering applications due to their biocompatibility and hydrolysis properties in the body. However, their low surface energy and lack of functional groups to interact with the cellular environment have limited their applications for in vivo studies. Ion beam modification is a convenient method for improving the surface properties of polymeric materials for functional biomedical applications. In the work described here, vacuum arc metal ion implantation was used to modify the composition of the near-surface region of three kinds of polymers-poly(L-lactide), poly(D, L-lactide-co-glycolide), and poly(L-lactide/caprolactone)-chosen as representative of biodegradable polymers. X-ray photoelectron spectroscopy analysis was used to characterize the chemical effects of these polymers after implantation with C and with Au, and the results were compared with untreated control samples. We find that oxidation behavior is brought about for certain implantation fluences, resulting in improved surface hydrophilicity.

Açıklama

Anahtar Kelimeler

Biodegradable polymers, ion implantation, surface characterization, X-ray photoelectron spectroscopy (XPS)

Kaynak

Ieee Transactions on Plasma Science

WoS Q Değeri

Q3

Scopus Q Değeri

Cilt

40

Sayı

3

Künye