On computing the vulnerability of some graphs as average

dc.contributor.authorAytac V.
dc.contributor.authorOdabas Z.N.
dc.date.accessioned2019-10-26T22:52:44Z
dc.date.available2019-10-26T22:52:44Z
dc.date.issued2009
dc.departmentEge Üniversitesien_US
dc.description.abstractWe investigate the resistance of a communication network to disruption of operation after the failure of certain stations or communication links, we use several vulnerability measures. If we think of a graph as modeling a network, the average lower independence number of a graph is one measure of graph vulnerability. For a vertex v of a graph G = (V, E), the lower independence number iv(G) of G relative to v is the minimum cardinality of a maximal independent set of G that contains v. The average lower independence number of G, denoted by iav(G), is the value |1/V(G)| ?v?V(G) iv(G). In this paper, we define and examine this parameter and consider the average lower independence number of binomial trees and middle graphs of some special graphs. © 2009 Academic Publications.en_US
dc.identifier.endpage146en_US
dc.identifier.issn1311-8080
dc.identifier.issn1311-8080en_US
dc.identifier.issue1en_US
dc.identifier.scopusqualityN/Aen_US
dc.identifier.startpage137en_US
dc.identifier.urihttps://hdl.handle.net/11454/20323
dc.identifier.volume55en_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.relation.ispartofInternational Journal of Pure and Applied Mathematicsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAverage lower independence numberen_US
dc.subjectConnectivityen_US
dc.subjectGraph theoryen_US
dc.subjectMiddle graphen_US
dc.subjectVulnerabilityen_US
dc.titleOn computing the vulnerability of some graphs as averageen_US
dc.typeArticleen_US

Dosyalar