Success runs in a sequence of exchangeable binary trials
Küçük Resim Yok
Tarih
2007
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Elsevier Science Bv
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
The random variables xi(1), xi(2), are said to be exchangeable (or symmetric) if for each n, P{xi(1) <= x(1), . . ., <= x(n)} = P{xi(pi(1)) <= x(1),...,xi(pi(n)) <= x(n)} for any permutation pi = (pi(1),..., pi(n)) of {1, 2,..., n} and any x(i) is an element of R, i = 1,..., n, i.e. the joint distribution of xi(1), xi(2),...xi(n), is invariant under permutation of its arguments. In this study, run statistics are considered in the situation for which the elements of an exchangeable sequence xi(1), xi(2),...,xi(n) are binary with possible values "I" (success) or "0" (failure). The exact distributions of various run statistics are derived using the fact that the conditional distribution of any run statistic given the number of successes is identical to the corresponding distribution in the independent and identically distributed case. (c) 2007 Elsevier B.V. All rights reserved.
Açıklama
Anahtar Kelimeler
consecutive k-out-of-n system, exchangeable trials, longest run, multicomponent stress-strength model, Polya's urn model, run statistics
Kaynak
Journal of Statistical Planning and Inference
WoS Q Değeri
Q3
Scopus Q Değeri
N/A
Cilt
137
Sayı
9