A parametric study of a renewable energy based multigeneration system using PEM for hydrogen production with and without once-through MSF desalination

dc.authoridAltay, Lutfiye/0000-0003-4946-3615
dc.authorscopusid57495552000
dc.authorscopusid57194034206
dc.authorscopusid55131010100
dc.contributor.authorBozgeyik, Ahmet
dc.contributor.authorAltay, Lutfiye
dc.contributor.authorHepbasli, Arif
dc.date.accessioned2023-01-12T19:55:00Z
dc.date.available2023-01-12T19:55:00Z
dc.date.issued2022
dc.departmentN/A/Departmenten_US
dc.description.abstractThe importance of renewable energy compared to fossil fuels is increasing due to growing energy demand and environmental challenges. Multi-generation systems use one or more energy sources and produce several useful outputs. The present study aims at investigating and comparing solar energy based multi-generation systems with and without once -through MSF desalination unit from the thermodynamic point of view. Firstly, hydrogen, electricity, and hot water for space heating and domestic usage are produced using the system, which consists of a parabolic trough collector, an organic Rankine cycle (ORC) and a PEM electrolyzer and heat exchanger as sub-systems. The performance of the entire system is evaluated from the energetic and exergetic points of view. Various parameters affecting hydrogen production rate and efficiency values are also investigated with the thermodynamic model implemented in the Engineering Equation Solver (EES) package. The system can produce hydrogen at a mass flow rate of 20.39 kg/day. The results of the study show that the energy and exergy efficiency values of the ORC are calculated to be 16.80% and 40% while those for the overall system are determined to be 78% and 25.50%, respectively. Secondly, once-through MSF desalination unit is integrated to the system between ORC evaporator and heat exchanger producing domestic hot water in the solar cycle in order not to affect hydrogen production rate while thermodynamic values are compared. Fresh water production capacity of the system is calculated to be at a volumetric flow rate of 5.74 m(3)/day with 10 stages. (C) 2022 Published by Elsevier Ltd on behalf of Hydrogen Energy Publications LLC.en_US
dc.identifier.doi10.1016/j.ijhydene.2022.02.186
dc.identifier.endpage31754en_US
dc.identifier.issn0360-3199
dc.identifier.issn1879-3487
dc.identifier.issn0360-3199en_US
dc.identifier.issn1879-3487en_US
dc.identifier.issue74en_US
dc.identifier.scopus2-s2.0-85126607978en_US
dc.identifier.scopusqualityN/Aen_US
dc.identifier.startpage31742en_US
dc.identifier.urihttps://doi.org/10.1016/j.ijhydene.2022.02.186
dc.identifier.urihttps://hdl.handle.net/11454/76591
dc.identifier.volume47en_US
dc.identifier.wosWOS:000866214900007en_US
dc.identifier.wosqualityQ1en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherPergamon-Elsevier Science Ltden_US
dc.relation.ispartofInternational Journal Of Hydrogen Energyen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectMulti-generationen_US
dc.subjectEnergy efficiencyen_US
dc.subjectExergy efficiencyen_US
dc.subjectRenewable energyen_US
dc.subjectHydrogen energyen_US
dc.subjectOnce-through MSF desalinationen_US
dc.subjectPerformance Assessmenten_US
dc.subjectIntegrated-Systemen_US
dc.subjectMultiobjective Optimizationen_US
dc.subjectGeothermal Sourceen_US
dc.subjectSolaren_US
dc.subjectExergyen_US
dc.subjectDrivenen_US
dc.subjectPoweren_US
dc.subjectTrigenerationen_US
dc.subjectElectricityen_US
dc.titleA parametric study of a renewable energy based multigeneration system using PEM for hydrogen production with and without once-through MSF desalinationen_US
dc.typeArticleen_US

Dosyalar