A RESULT ON GENERALIZED DERIVATIONS WITH ENGEL CONDITIONS ON ONE-SIDED IDEALS
Küçük Resim Yok
Tarih
2010
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Korean Mathematical Soc
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
Let R be a non-commutative prime ring and I a non-zero left ideal of R Let U be the left Utumi quotient ring of R and C be the center of U and k, m, n, r fixed positive integers If there exists a generalized derivation g of R such that [g(x(m))x(n), x(r)](k) = 0 for all x is an element of I, then there exists a is an element of U such that g(x) = xa for all x is an element of R except when R congruent to M(2)(GF(2)) and I[I, I] = 0
Açıklama
Anahtar Kelimeler
prime rings, derivations, generalized derivations, left Utumi quotient rings, two-sided Martindale quotient ring, differential identities, Engel condition
Kaynak
Journal of the Korean Mathematical Society
WoS Q Değeri
Q3
Scopus Q Değeri
Cilt
47
Sayı
3