A RESULT ON GENERALIZED DERIVATIONS WITH ENGEL CONDITIONS ON ONE-SIDED IDEALS

Küçük Resim Yok

Tarih

2010

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Korean Mathematical Soc

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

Let R be a non-commutative prime ring and I a non-zero left ideal of R Let U be the left Utumi quotient ring of R and C be the center of U and k, m, n, r fixed positive integers If there exists a generalized derivation g of R such that [g(x(m))x(n), x(r)](k) = 0 for all x is an element of I, then there exists a is an element of U such that g(x) = xa for all x is an element of R except when R congruent to M(2)(GF(2)) and I[I, I] = 0

Açıklama

Anahtar Kelimeler

prime rings, derivations, generalized derivations, left Utumi quotient rings, two-sided Martindale quotient ring, differential identities, Engel condition

Kaynak

Journal of the Korean Mathematical Society

WoS Q Değeri

Q3

Scopus Q Değeri

Cilt

47

Sayı

3

Künye