Classical symmetry analysis and exact solutions for generalized Korteweg–de Vries models with variable coefficients

dc.contributor.authorPınar Z.
dc.contributor.authorOzis T.
dc.date.accessioned2019-10-27T08:01:46Z
dc.date.available2019-10-27T08:01:46Z
dc.date.issued2018
dc.departmentEge Üniversitesien_US
dc.description.abstractIn this paper, by using the classical symmetry analysis method symmetries for the generalized variable-coefficient Korteweg–de Vries model are obtained. Then, the reduced nonlinear ordinary differential equations with variable coefficients are solved by auxiliary equation method. Hermite differential equation is chosen as an auxiliary equation and some new exact solutions for the nonlinear partial differential equation in hand are obtained. © 2018 Elsevier Ltden_US
dc.identifier.doi10.1016/j.ijnonlinmec.2018.06.009
dc.identifier.endpage104en_US
dc.identifier.issn0020-7462
dc.identifier.issn0020-7462en_US
dc.identifier.scopusqualityQ1en_US
dc.identifier.startpage99en_US
dc.identifier.urihttps://doi.org/10.1016/j.ijnonlinmec.2018.06.009
dc.identifier.urihttps://hdl.handle.net/11454/25063
dc.identifier.volume105en_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.relation.ispartofInternational Journal of Non-Linear Mechanicsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectGroup transformationsen_US
dc.subjectHermite approximation methoden_US
dc.subjectVariable-coefficient Korteweg–de Vries modelen_US
dc.titleClassical symmetry analysis and exact solutions for generalized Korteweg–de Vries models with variable coefficientsen_US
dc.typeArticleen_US

Dosyalar