Neutrosophic N-Structures Applied to Sheffer Stroke BL-Algebras
dc.authorid | Katıcan, Tuğçe/0000-0003-1186-6750 | |
dc.authorid | Rezaei, Akbar/0000-0002-6003-3993 | |
dc.authorscopusid | 57200450829 | |
dc.authorscopusid | 6505910883 | |
dc.authorscopusid | 46861451100 | |
dc.authorscopusid | 6506230265 | |
dc.authorwosid | Oner, Tahsin/AAG-8405-2021 | |
dc.authorwosid | Katıcan, Tuğçe/HDN-4339-2022 | |
dc.authorwosid | Rezaei, Akbar/ACS-2067-2022 | |
dc.contributor.author | Katican, Tugce | |
dc.contributor.author | Oner, Tahsin | |
dc.contributor.author | Rezaei, Akbar | |
dc.contributor.author | Smarandache, Florentin | |
dc.date.accessioned | 2023-01-12T20:15:19Z | |
dc.date.available | 2023-01-12T20:15:19Z | |
dc.date.issued | 2021 | |
dc.department | N/A/Department | en_US |
dc.description.abstract | In this paper, we introduce a neutrosophic Arsubalgebra, a (ultra) neutrosophic N-filter, level sets of these neutrosophic N-structures and their properties on a Sheffer stroke BL-algebra. By defining a quasi-subalgebra of a Sheffer stroke BL-algebra, it is proved that the level set of neutrosophic N-subalgebras on the algebraic structure is its quasi-subalgebra and vice versa. Then we show that the family of all neutrosophic N-subalgebras of a Sheffer stroke BL-algebra forms a complete distributive lattice. After that a (ultra) neutrosophic N-filter of a Sheffer stroke BL-algebra is described, we demonstrate that every neutrosophic N-filter of a Sheffer stroke BL-algebra is its neutrosophic N-subalgebra but the inverse is generally not true. Finally, it is presented that a level set of a (ultra) neutrosophic N-filter of a Sheffer stroke BL-algebra is also its (ultra) filter and the inverse is always true, Moreover, some features of neutrosophic N-structures on a Sheffer stroke BL-algebra are investigated. | en_US |
dc.identifier.doi | 10.32604/cmes.2021.016996 | |
dc.identifier.endpage | 372 | en_US |
dc.identifier.issn | 1526-1492 | |
dc.identifier.issn | 1526-1506 | |
dc.identifier.issn | 1526-1492 | en_US |
dc.identifier.issn | 1526-1506 | en_US |
dc.identifier.issue | 1 | en_US |
dc.identifier.scopus | 2-s2.0-85113534537 | en_US |
dc.identifier.scopusquality | Q3 | en_US |
dc.identifier.startpage | 355 | en_US |
dc.identifier.uri | https://doi.org/10.32604/cmes.2021.016996 | |
dc.identifier.uri | https://hdl.handle.net/11454/78419 | |
dc.identifier.volume | 129 | en_US |
dc.identifier.wos | WOS:000688417500017 | en_US |
dc.identifier.wosquality | Q2 | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.language.iso | en | en_US |
dc.publisher | Tech Science Press | en_US |
dc.relation.ispartof | Cmes-Computer Modeling In Engineering & Sciences | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Sheffer stroke BL-algebra | en_US |
dc.subject | (ultra) filter | en_US |
dc.subject | neutrosophic N-subalgebra | en_US |
dc.subject | (ultra) neutrosophic N-filter | en_US |
dc.title | Neutrosophic N-Structures Applied to Sheffer Stroke BL-Algebras | en_US |
dc.type | Article | en_US |