Remarks on Certain Identities with Derivations on Semiprime Rings
dc.contributor.author | Fosner, A. | |
dc.contributor.author | Baydar, N. | |
dc.contributor.author | Strasek, R. | |
dc.date.accessioned | 2019-10-27T22:28:04Z | |
dc.date.available | 2019-10-27T22:28:04Z | |
dc.date.issued | 2015 | |
dc.department | Ege Üniversitesi | en_US |
dc.description.abstract | Let n be a fixed positive integer, let R be a (2n)! -torsion-free semiprime ring, let be an automorphism or an anti-automorphism of R, and let D (1) , D (2) : R -> R be derivations. We prove the following result: If (D (1) (2) (x) + D (2)(x)) (n) a similar to aEuro parts per thousand alpha(x) (n) = 0 holds for all x a R, then D (1) = D (2) = 0. The same is true if R is a 2-torsion free semiprime ring and F(x) A degrees beta(x) = 0 for all x a R, where F(x) = (D (1) (2) (x) + D (2)(x)) a similar to aEuro parts per thousand alpha(x), x aaEuro parts per thousand R, and beta is any automorphism or antiautomorphism on R. | en_US |
dc.identifier.doi | 10.1007/s11253-015-1037-9 | |
dc.identifier.endpage | 1614 | en_US |
dc.identifier.issn | 0041-5995 | |
dc.identifier.issn | 1573-9376 | |
dc.identifier.issn | 0041-5995 | en_US |
dc.identifier.issn | 1573-9376 | en_US |
dc.identifier.issue | 10 | en_US |
dc.identifier.startpage | 1609 | en_US |
dc.identifier.uri | https://doi.org/10.1007/s11253-015-1037-9 | |
dc.identifier.uri | https://hdl.handle.net/11454/50833 | |
dc.identifier.volume | 66 | en_US |
dc.identifier.wos | WOS:000358072900014 | en_US |
dc.identifier.wosquality | Q4 | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.language.iso | en | en_US |
dc.publisher | Springer | en_US |
dc.relation.ispartof | Ukrainian Mathematical Journal | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.title | Remarks on Certain Identities with Derivations on Semiprime Rings | en_US |
dc.type | Article | en_US |