Nanotechnology-Based Antimicrobial and Antiviral Surface Coating Strategies

dc.authoridUlucan Karnak, Dr. Fulden/0000-0001-5567-0261
dc.authoridErkoc, Pelin/0000-0002-0588-1869
dc.authorscopusid56676369200
dc.authorscopusid57226628821
dc.authorwosidUlucan Karnak, Dr. Fulden/AAB-5432-2019
dc.contributor.authorErkoc, Pelin
dc.contributor.authorUlucan-Karnak, Fulden
dc.date.accessioned2023-01-12T20:15:46Z
dc.date.available2023-01-12T20:15:46Z
dc.date.issued2021
dc.departmentN/A/Departmenten_US
dc.description.abstractBiocontamination of medical devices and implants is a growing issue that causes medical complications and increased expenses. In the fight against biocontamination, developing synthetic surfaces, which reduce the adhesion of microbes and provide biocidal activity or combinatory effects, has emerged as a major global strategy. Advances in nanotechnology and biological sciences have made it possible to design smart surfaces for decreasing infections. Nevertheless, the clinical performance of these surfaces is highly depending on the choice of material. This review focuses on the antimicrobial surfaces with functional material coatings, such as cationic polymers, metal coatings and antifouling micro-/nanostructures. One of the highlights of the review is providing insights into the virus-inactivating surface development, which might particularly be useful for controlling the currently confronted pandemic coronavirus disease 2019 (COVID-19). The nanotechnology-based strategies presented here might be beneficial to produce materials that reduce or prevent the transmission of airborne viral droplets, once applied to biomedical devices and protective equipment of medical workers. Overall, this review compiles existing studies in this broad field by focusing on the recent related developments, draws attention to the possible activity mechanisms, discusses the key challenges and provides future recommendations for developing new, efficient antimicrobial and antiviral surface coatings.en_US
dc.identifier.doi10.3390/prosthesis3010005
dc.identifier.endpage52en_US
dc.identifier.issn2673-1592
dc.identifier.issn2673-1592en_US
dc.identifier.issue1en_US
dc.identifier.scopus2-s2.0-85103643492en_US
dc.identifier.scopusqualityN/Aen_US
dc.identifier.startpage25en_US
dc.identifier.urihttps://doi.org/10.3390/prosthesis3010005
dc.identifier.urihttps://hdl.handle.net/11454/78568
dc.identifier.volume3en_US
dc.identifier.wosWOS:000660039900004en_US
dc.identifier.wosqualityN/Aen_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherMdpien_US
dc.relation.ispartofProsthesisen_US
dc.relation.publicationcategoryDiğeren_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectsurface modificationen_US
dc.subjectcoatingsen_US
dc.subjectnanomaterialsen_US
dc.subjectantimicrobialen_US
dc.subjectantiviralen_US
dc.subjectCOVID-19en_US
dc.subjectIn-Vitroen_US
dc.subjectSilver Nanoparticlesen_US
dc.subjectChain-Lengthen_US
dc.subjectCationic Polymersen_US
dc.subjectMolecular-Weighten_US
dc.subjectInfluenza-Virusen_US
dc.subjectH1n1 Influenzaen_US
dc.subjectDrug-Deliveryen_US
dc.subjectAntibacterialen_US
dc.subjectChitosanen_US
dc.titleNanotechnology-Based Antimicrobial and Antiviral Surface Coating Strategiesen_US
dc.typeReviewen_US

Dosyalar