STRONG COMMUTATIVITY PRESERVING GENERALIZED DERIVATIONS ON MULTILINEAR POLYNOMIALS

dc.contributor.authorArgac, Nurcan
dc.contributor.authorScudo, Giovanni
dc.date.accessioned2019-10-27T11:19:04Z
dc.date.available2019-10-27T11:19:04Z
dc.date.issued2017
dc.departmentEge Üniversitesien_US
dc.description.abstractLet R be a non-commutative prime ring of characteristic different from 2, with right Utumi quotient ring U and extended centroid C and let F and G be generalized derivations of R such that F(x)G(y) - F(y)G(x) = [x, y], for all x, y is an element of S, where S is a subset of R. Here we will discuss the following cases: (a) S = [R, R]; (b) S = L, where L is a non-central Lie ideal of R; (c) S = f (R), where f (R) is the set of all evaluations of a non-central multilinear polynomial f (x(1), . . . , x(n)) on R. In all cases, if R does not satisfy s4(x(1), . . . , x(1)), the standard polynomial identity on 4 non-commuting variables, then there exist s, c is an element of U such that F (x) = xs, G(x) = cx, for all x is an element of R, and sc = 1(C) (the unit of C). We also study the semiprime case.en_US
dc.identifier.doi10.2989/16073606.2017.1348398
dc.identifier.endpage1094en_US
dc.identifier.issn1607-3606
dc.identifier.issn1727-933X
dc.identifier.issue8en_US
dc.identifier.startpage1075en_US
dc.identifier.urihttps://doi.org/10.2989/16073606.2017.1348398
dc.identifier.urihttps://hdl.handle.net/11454/32685
dc.identifier.volume40en_US
dc.identifier.wosWOS:000419972300007en_US
dc.identifier.wosqualityQ4en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.language.isoenen_US
dc.publisherNatl Inquiry Services Centre Pty Ltden_US
dc.relation.ispartofQuaestiones Mathematicaeen_US
dc.relation.publicationcategoryMakale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectPrime ringsen_US
dc.subjectdifferential identitiesen_US
dc.subjectgeneralized derivationsen_US
dc.titleSTRONG COMMUTATIVITY PRESERVING GENERALIZED DERIVATIONS ON MULTILINEAR POLYNOMIALSen_US
dc.typeReview Articleen_US

Dosyalar