STRONG COMMUTATIVITY PRESERVING GENERALIZED DERIVATIONS ON MULTILINEAR POLYNOMIALS
dc.contributor.author | Argac, Nurcan | |
dc.contributor.author | Scudo, Giovanni | |
dc.date.accessioned | 2019-10-27T11:19:04Z | |
dc.date.available | 2019-10-27T11:19:04Z | |
dc.date.issued | 2017 | |
dc.department | Ege Üniversitesi | en_US |
dc.description.abstract | Let R be a non-commutative prime ring of characteristic different from 2, with right Utumi quotient ring U and extended centroid C and let F and G be generalized derivations of R such that F(x)G(y) - F(y)G(x) = [x, y], for all x, y is an element of S, where S is a subset of R. Here we will discuss the following cases: (a) S = [R, R]; (b) S = L, where L is a non-central Lie ideal of R; (c) S = f (R), where f (R) is the set of all evaluations of a non-central multilinear polynomial f (x(1), . . . , x(n)) on R. In all cases, if R does not satisfy s4(x(1), . . . , x(1)), the standard polynomial identity on 4 non-commuting variables, then there exist s, c is an element of U such that F (x) = xs, G(x) = cx, for all x is an element of R, and sc = 1(C) (the unit of C). We also study the semiprime case. | en_US |
dc.identifier.doi | 10.2989/16073606.2017.1348398 | |
dc.identifier.endpage | 1094 | en_US |
dc.identifier.issn | 1607-3606 | |
dc.identifier.issn | 1727-933X | |
dc.identifier.issue | 8 | en_US |
dc.identifier.startpage | 1075 | en_US |
dc.identifier.uri | https://doi.org/10.2989/16073606.2017.1348398 | |
dc.identifier.uri | https://hdl.handle.net/11454/32685 | |
dc.identifier.volume | 40 | en_US |
dc.identifier.wos | WOS:000419972300007 | en_US |
dc.identifier.wosquality | Q4 | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.language.iso | en | en_US |
dc.publisher | Natl Inquiry Services Centre Pty Ltd | en_US |
dc.relation.ispartof | Quaestiones Mathematicae | en_US |
dc.relation.publicationcategory | Makale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Prime rings | en_US |
dc.subject | differential identities | en_US |
dc.subject | generalized derivations | en_US |
dc.title | STRONG COMMUTATIVITY PRESERVING GENERALIZED DERIVATIONS ON MULTILINEAR POLYNOMIALS | en_US |
dc.type | Review Article | en_US |