Energy and exergy analyses of an active magnetic refrigerator

Küçük Resim Yok

Tarih

2014

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Springer International Publishing

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

In this paper, a thermodynamic model for predicting the performance of active magnetic refrigerator (AMR) is developed using energy and exergy analyses. Through this model, the cooling power, total power consumption, as well as the coefficient of performance (COP), exergy efficiency and exergy destruction rates of an AMR are determined. The effects of increasing mass flow rate on the COP, exergy efficiency and exergy destruction rates of the system are investigated. The results are presented to show that when mass flow rate increases, the COP and exergy efficiency curves reach their maximum values and then slightly decreases with increasing mass flow rate. The rate of exergy destruction increases with increasing mass flow rate due to the pump power requirements. The numerical results show that in order to reach optimal performance, mass flow rate must be adjusted carefully regarding to different operating conditions. © Springer International Publishing Switzerland 2014.

Açıklama

Anahtar Kelimeler

Active magnetic refrigerator, Energy, Exergy efficiency, Porous medium

Kaynak

Progress in Sustainable Energy Technologies Vol II: Creating Sustainable Development

WoS Q Değeri

Scopus Q Değeri

N/A

Cilt

Sayı

Künye