The Arnon bases in the Steenrod algebra

Küçük Resim Yok

Tarih

2020

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

De Gruyter Open Ltd

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

Let 'œ = 'œ p {\mathcal{A}=\mathcal{A}_{p}} be the mod ⢠p {\mathrm{mod}\,p} Steenrod algebra, where p is a fixed prime and let 'œ ? {\mathcal{A}{\prime}} denote the Bockstein-free part of 'œ {\mathcal{A}} at odd primes. Being a connected graded Hopf algebra, 'œ {\mathcal{A}} has the canonical conjugation ?. Using this map, we introduce a relationship between the X- A nd Z-bases of 'œ ? {\mathcal{A}{\prime}}. We show that these bases restrict to give bases to the well-known sub-Hopf algebras 'œ ⢠(n-1) {\mathcal{A}(n-1)}, n ? 1 {n\geq 1}, of 'œ ? {\mathcal{A}{\prime}}. © 2020 Walter de Gruyter GmbH, Berlin/Boston 2020.

Açıklama

Anahtar Kelimeler

Adem relations, antipode, Arnon basis, Hopf algebra, monomial basis, Steenrod algebra, Wall basis

Kaynak

Georgian Mathematical Journal

WoS Q Değeri

Scopus Q Değeri

Q3

Cilt

27

Sayı

4

Künye