A note on the definition of deformed exponential and logarithm functions
dc.contributor.author | Oikonomou, Thomas | |
dc.contributor.author | Bagci, G. Baris | |
dc.date.accessioned | 2019-10-27T20:45:45Z | |
dc.date.available | 2019-10-27T20:45:45Z | |
dc.date.issued | 2009 | |
dc.department | Ege Üniversitesi | en_US |
dc.description.abstract | The recent generalizations of the Boltzmann-Gibbs statistics mathematically rely on the deformed logarithmic and exponential functions defined through some deformation parameters. In the present work, we investigate whether a deformed logarithmic/exponential map is a bijection from R+/R (set of positive real numbers/all real numbers) to R/R+, as their undeformed counterparts. We show that their inverse map exists only in some subsets of the aforementioned (co)domains. Furthermore, we present conditions which a generalized deformed function has to satisfy, so that the most important properties of the ordinary functions are preserved. The fulfillment of these conditions permits us to determine the validity interval of the deformation parameters. We finally apply our analysis to Tsallis q-deformed functions and discuss the interval of concavity of the Reacutenyi entropy. | en_US |
dc.description.sponsorship | TUBITAK (Turkish Agency)Turkiye Bilimsel ve Teknolojik Arastirma Kurumu (TUBITAK) [108T013]; CNPq (Brazilian Agency)National Council for Scientific and Technological Development (CNPq) [505453/2008-8] | en_US |
dc.description.sponsorship | T.O. acknowledges fruitful remarks from E. M. F. Curado, C. Tsallis, R. S. Wedemann, and L. Lacasa. We thank U. Tirnakli for a careful reading of the manuscript and bringing Ref. 6 to our attention. G. B. B. was supported by TUBITAK (Turkish Agency) under Research Project No. 108T013. T.O. was supported by CNPq (Brazilian Agency) under Research Project No. 505453/2008-8. | en_US |
dc.identifier.doi | 10.1063/1.3227657 | |
dc.identifier.issn | 0022-2488 | |
dc.identifier.issn | 1089-7658 | |
dc.identifier.issn | 0022-2488 | en_US |
dc.identifier.issn | 1089-7658 | en_US |
dc.identifier.issue | 10 | en_US |
dc.identifier.scopusquality | Q2 | en_US |
dc.identifier.uri | https://doi.org/10.1063/1.3227657 | |
dc.identifier.uri | https://hdl.handle.net/11454/42308 | |
dc.identifier.volume | 50 | en_US |
dc.identifier.wos | WOS:000271357600031 | en_US |
dc.identifier.wosquality | Q3 | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.language.iso | en | en_US |
dc.publisher | Amer Inst Physics | en_US |
dc.relation.ispartof | Journal of Mathematical Physics | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Boltzmann equation | en_US |
dc.subject | entropy | en_US |
dc.subject | free energy | en_US |
dc.subject | statistics | en_US |
dc.title | A note on the definition of deformed exponential and logarithm functions | en_US |
dc.type | Article | en_US |