Annihilators and centralizers of generalized skew derivations on multilinear polynomials

dc.contributor.authorYarbil, Nihan Baydar
dc.contributor.authorDe Filippis, Vincenzo
dc.contributor.authorScudo, Giovanni
dc.date.accessioned2019-10-27T10:03:03Z
dc.date.available2019-10-27T10:03:03Z
dc.date.issued2018
dc.departmentEge Üniversitesien_US
dc.description.abstractLet R be a prime ring of characteristic different from 2, Q(r) its right Martindale quotient ring, C its extended centroid, a, b. R, f (x1,..., xn) a non-central multilinear polynomial over C with n non-commuting variables and G a non-zero generalized skew derivation of R. Assume a = 0, b /. C, S = {f (r1,..., rn) : r1,..., rn. R} and a[b, G(x) x] = 0, for all x. S. Then one of the following holds: (a) there exists c. Q(r) such that ac = abc = 0 and G(x) = cx, for any x. R; (b) f (x1,..., xn) 2 is central valued on R and there exists c. Q(r) su ch that a[b, c] = 0 and G(x) = cx, for any x is an element of R.en_US
dc.identifier.doi10.1007/s13366-017-0372-4
dc.identifier.endpage595en_US
dc.identifier.issn0138-4821
dc.identifier.issn2191-0383
dc.identifier.issn0138-4821en_US
dc.identifier.issn2191-0383en_US
dc.identifier.issue3en_US
dc.identifier.scopusqualityQ3en_US
dc.identifier.startpage573en_US
dc.identifier.urihttps://doi.org/10.1007/s13366-017-0372-4
dc.identifier.urihttps://hdl.handle.net/11454/30065
dc.identifier.volume59en_US
dc.identifier.wosWOS:000442082300010en_US
dc.identifier.wosqualityN/Aen_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherSpringer Heidelbergen_US
dc.relation.ispartofBeitrage Zur Algebra Und Geometrie-Contributions To Algebra and Geometryen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectGeneralized skew derivationen_US
dc.subjectMultilinear polynomialen_US
dc.subjectPrime ringen_US
dc.titleAnnihilators and centralizers of generalized skew derivations on multilinear polynomialsen_US
dc.typeArticleen_US

Dosyalar