Development of a Novel Feature Weighting Method Using CMA-ES Optimization

dc.contributor.authorTasci, Erdal
dc.contributor.authorGokalp, Osman
dc.contributor.authorUgur, Aybars
dc.date.accessioned2021-05-03T20:41:38Z
dc.date.available2021-05-03T20:41:38Z
dc.date.issued2018
dc.departmentEge Üniversitesien_US
dc.description26th IEEE Signal Processing and Communications Applications Conference (SIU) -- MAY 02-05, 2018 -- Izmir, TURKEYen_US
dc.descriptionGokalp, Osman/0000-0002-7604-8647;en_US
dc.description.abstractFeature weighting is one of the fundamental problems in machine learning algorithms and data mining to determine the importance of features. in this study, a novel feature weighting method using Covariance Matrix Adaptation Evolution Strategy (CMA-ES) optimization method for classification process is proposed. Experimental results are obtained by 10-fold cross validation technique with 3 different classifier models: Naive Bayes (NB), K nearest neighbors (K-NN) and Random Forest (RF) on 5 datasets in UCI Machine Learning Repository. Classification accuracy rate is used as the performance criterion. in addition, the developed CMAES-based method is also adapted to optimize these 3 classifiers in a voting-based ensemble algorithm. in this context, a different ensemble-based method is presented with CMAES-based feature weights obtained when the classifiers are individually and all together. Experimental studies show that the developed method gives better performance and promising results than the results obtained without feature weighting.en_US
dc.description.sponsorshipIEEE, Huawei, Aselsan, NETAS, IEEE Turkey Sect, IEEE Signal Proc Soc, IEEE Commun Soc, ViSRATEK, Adresgezgini, Rohde & Schwarz, Integrated Syst & Syst Design, Atilim Univ, Havelsan, Izmir Katip Celebi Univen_US
dc.identifier.isbn978-1-5386-1501-0
dc.identifier.issn2165-0608
dc.identifier.urihttps://hdl.handle.net/11454/70654
dc.identifier.wosWOS:000511448500031en_US
dc.identifier.wosqualityN/Aen_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.language.isotren_US
dc.publisherIeeeen_US
dc.relation.ispartof2018 26Th Signal Processing and Communications Applications Conference (Siu)en_US
dc.relation.ispartofseriesSignal Processing and Communications Applications Conference
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectmachine learningen_US
dc.subjectpattern recognitionen_US
dc.subjectfeature weightingen_US
dc.subjectfeature selectionen_US
dc.subjectoptimizationen_US
dc.subjectclassificationen_US
dc.subjectensemble learningen_US
dc.subjectdata miningen_US
dc.titleDevelopment of a Novel Feature Weighting Method Using CMA-ES Optimizationen_US
dc.typeConference Objecten_US

Dosyalar