GENERALIZED SKEW DERIVATIONS ON MULTILINEAR POLYNOMIALS IN RIGHT IDEALS OF PRIME RINGS
Küçük Resim Yok
Tarih
2014
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Hacettepe Univ, Fac Sci
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
Let R be a prime ring, f(x(1),...,x(n)) a multilinear polynomial over C in n noncommuting indeterminates, I a nonzero right ideal of R, and F : R -> R be a nonzero generalized skew derivation of R. Suppose that F(f(r(1),...,r(n)))f(r(1),...,r(n)) is an element of C, for all r(1),...,r(n) is an element of I. If f(x(1),...,x(n)) is not central valued on R, then either char(R) = 2 and R satisfies s(4) or one of the following holds: (i) f (x(1),...,x(n))x(n+1) is an identity for I; (ii) F(I)I = (0); (iii) [f(x(1),...,x(n)),x(n+1)]x(n+2) is an identity for I, there exist b,c,q is an element of Q with q an invertible element such that F(x) = bx - qxq(-1) c for all x is an element of R, and q(-1)cI subset of I. Moreover, in this case either (b - c)I = (0) or b c is an element of C and f(x(1),...,x(n))(2) is central valued on R.
Açıklama
Anahtar Kelimeler
Identity, generalized skew derivation, automorphism, (semi-)prime ring
Kaynak
Hacettepe Journal of Mathematics and Statistics
WoS Q Değeri
Q4
Scopus Q Değeri
Cilt
43
Sayı
1