GENERALIZED SKEW DERIVATIONS ON MULTILINEAR POLYNOMIALS IN RIGHT IDEALS OF PRIME RINGS

Küçük Resim Yok

Tarih

2014

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Hacettepe Univ, Fac Sci

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

Let R be a prime ring, f(x(1),...,x(n)) a multilinear polynomial over C in n noncommuting indeterminates, I a nonzero right ideal of R, and F : R -> R be a nonzero generalized skew derivation of R. Suppose that F(f(r(1),...,r(n)))f(r(1),...,r(n)) is an element of C, for all r(1),...,r(n) is an element of I. If f(x(1),...,x(n)) is not central valued on R, then either char(R) = 2 and R satisfies s(4) or one of the following holds: (i) f (x(1),...,x(n))x(n+1) is an identity for I; (ii) F(I)I = (0); (iii) [f(x(1),...,x(n)),x(n+1)]x(n+2) is an identity for I, there exist b,c,q is an element of Q with q an invertible element such that F(x) = bx - qxq(-1) c for all x is an element of R, and q(-1)cI subset of I. Moreover, in this case either (b - c)I = (0) or b c is an element of C and f(x(1),...,x(n))(2) is central valued on R.

Açıklama

Anahtar Kelimeler

Identity, generalized skew derivation, automorphism, (semi-)prime ring

Kaynak

Hacettepe Journal of Mathematics and Statistics

WoS Q Değeri

Q4

Scopus Q Değeri

Cilt

43

Sayı

1

Künye