Prime Rings with Generalized Derivations on Right Ideals

Küçük Resim Yok

Tarih

2011

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

World Scientific Publ Co Pte Ltd

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

Let K be a commutative ring with unit, R be a prime K-algebra with center Z(R), right Utumi quotient ring U and extended centroid C, and I a nonzero right ideal of R. Let g be a nonzero generalized derivation of R and f(X(1), ... , X(n)) a multilinear polynomial over K. If g(f(x(1,) ... , x(n) ))f(x(1), ... , x(n)) is an element of C for all x(1), ... , x(n) is an element of I, then either f(x1, ... , ) x(n) (+ 1) is an identity for I, or char(R) = 2 and R satisfies the standard identity s(4)(x(1), ... , x(4)), unless when g(x) = ax [x, b] for suitable a, b is an element of U and one of the following holds: (i) a, b is an element of C and f, x)2 is central valued on R; (ii) a is an element of C and f(x(1), ... , x(n)) is central valued on R; (iii) aI = 0 and [f(x(1) , ... , x(n)), x(n + 1)]x(n +) (2) is an identity for I; (iv) aI = 0 and (b - beta)I = 0 for some beta is an element of C.

Açıklama

Anahtar Kelimeler

prime ring, (generalized) derivation, right Utumi quotient ring, differential identity, generalized polynomial identity

Kaynak

Algebra Colloquium

WoS Q Değeri

Q4

Scopus Q Değeri

Cilt

18

Sayı

Künye